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In order to provide a new method for partial optimal control of systems, this work uses Bernoulli 

wavelets and uses Caputo's formula to solve partial optimal control problems (FOCPs) with 

inequality constraints. For the new optimization technique, the work uses partial order Bernoulli 

wave functions (F-BWFs) as basic functions. The answer using this method is expressed in 

terms of F-BWF where the coefficients have not yet been found. To simplify FOCPs in a system 

of nonlinear algebraic equations the procedure entails transforming inequality constraints into 

equality requirements by using operational matrices of fractional integration and F-BWFs and 

using the multipliers technique Lagrange. Numerical examples confirm the validity of the 

proposed strategy and demonstrate its correctness and efficiency when compared to the 

analytical or approximate answers provided by other methods. 
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1. Introduction 

      Within the modeling of a wide range of phenomena in science and engineering, many researchers have demonstrated the 

utility of (FDEs). [1],[2],[3],[4]. After reviewing these studies, it was found that FDEs are considered successful in describing a 

wide range of complex physical and engineering challenges. [5] 

Due to the lack of analytic solutions for most (FDEs), the utilization of approximate and numerical techniques becomes 

essential. Various analytical and numerical methods have been proposed to solve FDEs, including the extrapolation method [6], 

[7], [8], [9], [10], [11], [12], [13], [14] 

A branch of optimization theory called optimal control theory applies to a variety of fields including industry, engineering,  

and science. Its main goal is to minimize expenses or maximize rewards. The field of optimal control issues has been the 

subject of much research [15], [16], [17], [18], [19], [20] Swann 1990 [21]was studied in detail.  

By researching new areas in mathematics, we find that partial optimal control theory is the best. Although it is constantly 

being developed, it is possible to use its various definitions for fractional derivatives. For example, for fractional optimal 

control problems (FOCPs), we use fractional Riemann-Liouville and Caputo derivatives [22], Clustering techniques and 

Legendre's multiwavelet rules have been effectively applied by researchers such as Yousefi et al. (2011) [23] To estimate the 

solutions of FOCPs, a method for multi-dimensional FOCPs based on Bernstein OM polynomials is presented [24] ,research 

has been done on using OM polynomials and the Ritz technique to solve FOCPs [25], [26], neural network applications have 

been studied [27] in order to solve a class of FOCPs. 

An analytical and numerical method for solving unconstrained distributed-order partial optimal control problems (FOCPs) 

was presented[27], the approximation of solutions for FOCPs using Bernoulli polynomials was investigated, [28], [29] 
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presented a numerical method using wavelet LCs for binary FOCPs. dimensions, and using generalized partial order Bernoulli-

Legendre functions, two-dimensional FOCPs were solved in a follow-up study [30]. 

Researchers in [31], [32], [33], [34]  are among those whose works interested readers might consult for further examination 

of FOCPs. 

This paper's primary goal is to suggest an optimization strategy for the following FOCPs min based on the fractional-order 

Bernoulli wavelet functions (F-BWFs) 

  J = ∫  (   ( )  ( ))  
 

 
                                                                                                                                                         (1) 

susceptible to limitations on inequality and the fractional dynamical system 

  

and the initial conditions 

 

The partial optimal control of systems using Bernoulli wavelets is then addressed by introducing an optimization technique 

based on F-BWF. A new OM and OM product of fractional integration and a numerical method for solving equations (1)–(3) 

are established. The structure of this document is as follows: In Section 2, the basic concepts of fractional calculus and 

fractional ordering of Bernoulli wavelet functions were addressed, in Section 3 the F-BWF operational matrices were 

developed, in Section 4 a digital technique based on F-BWF was presented, and in Section 5 illustrative examples were 

provided. It demonstrates the accuracy and effectiveness of the current approach, and finally Section 6 provides a summary of 

the main results. 

2. Definitions and Mathematical Preliminaries: 

This part goes over the F-BWFs and introduces fractional calculus. 

Definition 1: (Hassani et al. 2019a, b) defines the Caputo fractional derivative of order v of f(t) for q - 

1< v < q. 

 

where T(.) represents the gamma function defined for z > 0 and q = [v]+1 indicates the integer 

component of v 

 

Definition 2: [30] defines the Riemann-Liouville fractional integral operator of order V of f(t) 

 

The following statement provides the useful relationship between the Caputo operator and the Riemann-

Liouville operator [30] 

(2) 

(3) 

(4) 

(5) 
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It is also important to note the following useful property: [35] 

 

where q -1 < v < q. 

2.1 Segment-Based Bernoulli Wavelets: 

On the interval [0,1) specified, Partial ordering of Bernoulli wavelets of order a, Ψa n,m; n=1; 2;...; 2k~-

1, m = 0; 1;...; M 

 

that ß
~
(2 

k-1
t
a
 - n + 1)     m=0 , m>0 

 

in which Bernoulli polynomials of rank m on [0, 1] are denoted by ßm(t). The definition of ßm(t), the 

degree m Bernoulli polynomials, is given by (Keshavarz et al. 2015). 

 

where ßi are rational numbers, often known as Bernoulli numbers, that can be found by applying the 

trigonometric function series expansion 

 

The first few Bernoulli numbers are 

 

 

2.2 The Functions Approximation: 

Any square-integrable stochastic function f(t) can be expanded in the interval [0, 1] using F-BWFs such 

as (Rahimkhani et al. 2016). 

(6) 

(7) 

(8) 

(9) 

(10) 
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Equation (11) reduces the infinite series so that f(t) is roughly expressed in terms of the F-BWFs 

 

Where the transposed T and supplied by are the unknown vector C and Ψa(t) which are two 

perpendicular vectors k-1(M + 1) 

C = [c1;0; c1;1; . . .; c1;M; c2;0; c2;1; . . .; c2;M; . . .; c2 
k-1

;0; c2 
k-1

;1; . . .; c2 
k-1

;M]
T
 

Ψ
a
(t)= [   

 ,0 (t),   
 ,1 (t), …..,   

 , M(t) ,   
 ,0 (t),    

 ,1 (t), …. ,    
 , M(t),….,      

 ,0(t),      
 ,1(t) , 

…. ,      
 , M(t)]

T
, 

And C
T
 = F

T
D

-1
, 

D= { Ψ
a
, Ψ

a
} = ∫  

 

 
a
(t)  At

(t) t 
a-1

 dt, 

 

 

 

 

 

 

 

 

3. The Matrices of Operation: 

Determining the F-BWFs OM of the partial integration and OM of the product is the primary goal of 

this section. 

3.1 The Fractional Integration Operational Matrix: 

The fractional integral of Riemann-Liouville for the vector Ψa(t), as stated in Equation (13) can be 

acquired as 

 

where P(v,a) is the Riemann–Liouville fractional integration described by the 

 2 
k–1

(M + 1) * 2 
k-1

(M + 1) dimensional OM 

 

(11) 

(12) 

(13) 

(14) 

(15) 
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Where   

 

(16) 
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We select (v = 1, a = 3/2, k = 1, M = 2) to demonstrate the computation process. So, we've 

 

also by choosing (v = a = 3/2, k = 1, M = 2), we have  

 

3.1 The F-BWFs Product Operational Matrix: 

 

where A
~
 is a (M + 1) * (M +1) matrix and A is an arbitrary (M + 1) *1 vector. We can use 

Ψa(t)ΨaT(t)A to approximate Ψa(t) in order to obtain A
~
. 

 

Where  

 

And  

 

Using Eq. (19) we obtain   

 

 

 

 

 

 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 
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So by considering 

  

we have 

                       or      

so that the OM of multiplication can be determined. To demonstrate the computation process, we select 

(k = 1, M = 2, a = 1) thus, we have 

 

 

3.2 Analysis of Convergence: 

Theorems that follow will be helpful in the findings that follow. In this case, we presume 

Theorem 1 Suppose f Є L
2
[0 , 1] be a continuous function and                    

And                                                                                                                          then, we have 

 

 

 

 

 Where 

 

Evidence Assume that, using FBWFs, f ~*(t) is an approximation of f(t). Next, we have using Eq. (12) 

 

                                                                    where C
T 

= F
T
D

-1
. Then, we get    

 

                                                                      and 

 

(23) 

(24) 
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Here, by changing the variable 2 
k-1

 t
a
 - i + 1 = x, 

We know that if  

 By making use of the following Bernoulli polynomial property (Sahu and Saha Ray 2017) 

                                                  

                                                           we have 

 

 

On the other hand,                                                         Taking into account the conversation above, we 

obtain the following relation 

 

Theorem 2 Assume that f Є L
2
[0, 1] be a continuous function and 

                                                             The truncated error criterion E(t) can be determined if the 

expansion of F-BWFs is truncated as 

 

Where  

 

Use of Equation as Proof To calculate the truncated error term, let f *(t) represent the truncated F-BWFs 

expansion 

 

(25) 
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then, we derive 

 

Additionally, we have  

 

By changing the variable 2 
k-1

 t
a
 - n + 1 = x, we get 

 

Therefore, with Theorem 1 and the equation above, we obtain  

 

 

Where  
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4. An explanation of the suggested approach: 

In this part the following FOCPs with inequality constraints are solved using expansion of F-BWFs and 

their OM 

 

where the state and control functions are denoted by x(t) and u(t). 

To do this, we multiply by                  F-BWFs as 

 

By considering Eq. (15) and the initial conditions given in Eq. (26), we may derive by integrating from 

order m on both sides of Eq. (27) with respect to t 

 

Where  

 

and we suppose 

Our problem is changed to the following problem by replacing Eq. (28) and in Eq. (26).  

 

 

 

 Using slack variables we can transform the inequality constraint into an equality constraint 

(26) 

(27)

. 

(28) 

(29) 
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Using the product OM of F-BWFs Eq. (17) and extending Zj(t) by F-BWFs, we have 

 

From the above, by subtracting Ψa(t) from equation (29), we obtain 

 

Currently, by applying the Lagrange multipliers approach, we have 

 

The following system provides the maximum requirements 

 

Using programs like MATLAB, we can find C and U and get the approximate answer to Equation (26). 

5. Example Test Problems: 

Several numerical examples are given in this part to show the effectiveness and dependability of the 

suggested approach. For all of the numerical calculations, MATLAB 2018a was used. 

Example: Examine the following FOCP with the inequality restriction that [45] describes. 

 

The minimizing solutions for the state and control variables in this problem are 

 x(t) = -t
3/2 

and u(t) = 1 - t
3/2

,  

 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 
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When it is necessary to calculate the vectors of the unknown coefficients C and U. After replacing 

equation (35), for equation (37) we obtain 

 

Subject 

 

Additionally, we have 0 ≤ u(t) ≤ 1 and x(t) ≤ 0. Thus, employing slack variables, we've 

X(t) + s
2
(t) = 0, u(t) - z

2
(t) = 0; u(t) + w

2
(t) = 1 

Consequently, 

 

Table 1 With k = 1, M = 1, and k = 1, the performance indicator value for the example in the case 

of M = 2 

k = 1, M = 1 k = 1, M = 2 

a J a J 

1  -

0.696326654061 

1 -

0.6999603188947 

1.1 -

0.696776379794 

1.1 -

0.6999545485260 

1.2 -

0.6999588095082 

1.2 -

0.698768230495 

1.3 -

0.699485668624 

1.3 -

0.6999752536707 

1.4 -

0.699871201375 

1.4 -

0.6999921239567 

1.5 -

0.699999909999 

1.5 -0.69999099999 

 

(37) 
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Table 2 For example, the anticipated values of J for v = a = 3/2 using the F-BWFs approach and 

the Ritz method 

Methods J 

Zeta penalty using the Ritz technique -0.899989 

m = 0.1, n = k = 5  

Present method  

Present method -0.699969 

 

Table 3 The state and control variable absolute errors with k = 1, M = 1, and m = a = 3/2 for 

example 

t  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

ex  1.6

E-14 

9.6

E-14 

2.3

E-13 

4.2

E-13 

6.5

E-13 

9.0

E-13 

1.1

E-12 

1.4

E-12 

1.7

E-12 

eu   2.5

E-12 

2.4

E-12 

2.3

E-12 

2.0

E-12 

1.8

E-12 

1.5

E-12 

1.2

E-12 

9.2

E-13 

5.5

E-13 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Behavior of the control variables u(t) and x(t), when k = 1, M = 2, and a = 1, 3/2 

 

6. Conclusion: 

This paper proposes a new and efficient numerical technique to deal with FOCPs with inequality 

constraints based on F-BWFs and Lagrange multipliers. Using F-BWFs to expand the solution is the main 

idea. The basis of F-BWFs, the numerical results clearly show that the recommended strategy provides 

superior accuracy and efficiency #Innovation #NumericalMethods #Optimization 
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