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The main purpose of present our paper, is to obtain the best one-sided trigonometrical 

approximation for an unbounded function of one variable in weighted 𝐿𝑝,𝛼 [𝜋, −𝜋]-space. 

Additionally, the averaged modulus of smoothness have been utilized in the weighted 

𝐿𝑝,𝛼  [𝜋, −𝜋]-space to estimate the degree of the best one-sided trigonometrical approximation. 

Also some certain auxiliary lemmas that will help us in obtaining our main results have been 

introduced. Furthermore, the direct theorem (Jackson theorem) and the inverse theorem were 

also proven in trigonometric polynomials, and the equivalence between them was obtained. 
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1. Introduction and Preliminaries 

       The approximation theory is a vast field. The study of the theory of trigonometric approximation is of great mathematical 

interest and practical significance. The Fourier series of 2𝜋 −periodic functions on the real line can be summated linearly to 

obtain the most significant trigonometric polynomials utilized in approximation theory. The periodicity of the functions has 

contributed significantly to the advancement of the theory of trigonometric approximation. In [1] Auad and Khrajan estimated 

the rate for best trigonometric approximation of unbounded functions of one variable in weighted space 𝐿𝑝,𝛼[−𝜋, 𝜋] as well as 

studied the degree of best trigonometric approximation by modulus of smoothness in 𝐿𝑝,𝛼[−𝜋, 𝜋]. In [2] R. F. Hassan etal. 

studied the best one-sided multiplier approximation of unbounded functions for trigonometric polynomials in weighted space 

𝐿𝑝,Ψ𝑛[0,2𝜋] as well as estimate the degree of the best one-sided multiplier approximation by averaged modulus. In [3] R. Suo 

and Y. Ping obtain the asymptotic estimations of non-linear best m-term one-sided trigonometric approximation under the norm 

𝐿𝑝 (1 ≤  𝑝 ≤  ∞) of multiplier function classes within the norm 𝐿𝑝 used to estimate the non-linear best m-term one-sided 

trigonometric approximation and obtain the results of the corresponding m-term Greedy-liked one-sided trigonometric 

approximation. In [4] A. H. Zaboon examined the approximation of functions using the Fejer operator in the space 𝐿𝑝,𝑤[−𝜋, 𝜋] 

in terms of the second-order average modulus which resulted in determining the best approximation of the function, so that the 

difference between the function 𝑓 and its approximation 𝛿𝑚(𝑓) is equal to zero. In [5] S. K. Al-Saidy and A. H. Zuboon 

investigate the use of weighted trigonometric polynomials for approximating unbounded functions within locally-global 

weighted spaces 𝐿𝑃,𝛿,𝑤[−𝜋, 𝜋], utilizing the weighted Ditzian-Totik modulus of smoothness. In [6] Z. Cakir, C. Aykol, D. 

Soylemez and A. Serbetci found best approximation trigonometric polynomials in Morrey space 𝐿𝑝,𝜆[0,2𝜋] and the theorems 

both direct and inverse using trigonometric polynomials in the spaces 𝐿𝑝,𝜆[0,2𝜋] the closure of 𝐶∞[0,2𝜋] are proven and we 

obtain the modulus of smoothness characterization of 𝐾-functionals and provide the Bernstein type inequality for trigonometric 

polynomials in the spaces 𝐿𝑝,𝜆[0,2𝜋]. In [7] S. S. Mahdi and E. S. Bhaya find the degree of the best approximation by this 

neural network using the k’ th order of smoothness. In [8] W. A. Ajel and E. S. Bhaya obtained the relation between the degree 

of (monotone, unconstrained) approximation under some conditions on f which belongs to quasi normed space.  On the other 

hand, several papers have been devoted to studying polynomial approximation with constraints. In particular in [9–12] one-

sided approximation was considered and some nonlinear operators for one-sided approximation  that constructions have been 

proposed in [13–15]. In the present work we consider rate of best one-sided trigonometrical approximation of unbounded 
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function for one variable in weighted space in interval [𝜋, −𝜋] in terms averaged modulus of smoothness. In addition, were 

presented proofs the direct theorem and inverse theorem of trigonometric polynomials and we obtained the equivalence 

between them.  

In the last years, there has been interest in studying open problems related to one-sided approximation (see [16], [17], [18], [19] 

and [20]). We shall denote by 𝐴 = [−𝜋, 𝜋]   the set of all 2𝜋 −periodic with respect to the each variable functions of  one 

variable 𝑔(𝑥), which are unbounded and integrable on  

‖𝑔‖𝐿𝑝,𝛼 ∶= ‖𝑔‖𝐿𝑝,𝛼(𝐴) = { ∫ |𝑔(𝑥)𝑤𝛼(𝑥)|
𝑝𝑑𝑥

𝜋

−𝜋

}

1 𝑝⁄

, 1 ≤ 𝑝 < ∞ 

‖𝑔‖∞ ∶= sup{|𝑔(𝑥)|: 𝑥 ∈ 𝐴}. 

where 𝑤𝛼(𝑥) is weigh function in 𝑊 s.t 𝑊 = {𝑤|𝑤: 𝐴 → 𝑅+}. 

For 𝑓 ∈ 𝐿𝑝,𝛼(𝐴) we define the modulus of smoothness in order 𝑘 of 𝑓 as follows: 

𝜔𝑘(𝑓, 𝛿) = sup{|∆ℎ
𝑘𝑓(𝑦)| ∶ 𝑦, 𝑦 + 𝑘ℎ ∈ 𝐴},                                                                 (1) 

where  

∆ℎ
𝑘𝑓(𝑦) =∑(−1)𝑘+𝒿 (

𝑘

𝒿
) 𝑓(𝑦 + 𝒿ℎ)

𝑘

𝒿=0

 

is the 𝑘 −difference of the function 𝑓 with step ℎ (in direction ℎ) . 

The 𝑘 −th averaged modulus of smoothness of 𝑓 ∈ 𝐿𝑝,𝛼 , 1 ≤ 𝑝 < ∞, is given by  

  𝜏𝑘(𝑓, 𝛿)𝐿𝑝,𝛼(𝐴) = ‖𝜔𝑘(𝑓,⋅, 𝛿)‖𝐿𝑝,𝛼(𝐴).                                                              (2) 

Both definitions (1) and (2) in the one-dimensional case coincide with definitions of 𝑘 −th averaged moduli of smoothness, 

given in [3], [4]. For the history of the averaged moduli of smoothness see [21], [22], [23]. 

In the case 𝑝 = ∞ the 𝑘 −th averaged modulus of smoothness coincides with the usual (uniform) 𝑘 −th modulus of continuity. 

The connection between the integral moduli given by  

𝜔𝑘(𝑓, 𝛿)𝐿𝑝,𝛼(𝐴) = sup {‖∆ℎ
𝑘𝑓(. )‖

𝐿𝑝,𝛼(𝐴)
: |ℎ| ≤ 𝛿} 

is the following: 

𝜔𝑘(𝑓, 𝛿)𝐿𝑝,𝛼(𝐴) ≤ 𝜏𝑘(𝑓, 𝛿)𝐿𝑝,𝛼(𝐴) ≤ 𝜔𝑘(𝑓, 𝛿)∞. 

We shall approximate the functions in 𝐴 by trigonometrical polynomials of order 𝑛. The set of all trigonometrical polynomials 

of order 𝑛 with respect to each of one-variables we define by  

𝜋𝑛 = {𝑝: 𝑝(𝑥) = ∑ 𝑎𝑛΄,𝑛΄΄ cos 𝑛΄𝑥 sin 𝑛΄΄𝑥

0≤𝑛΄+𝑛΄΄≤𝑛

}. 

The best trigonometrical approximation of order 𝑛 of the function 𝑓 ∈ 𝐿𝑝,𝛼(𝐴) is given by  

𝐸𝑛(𝑓)𝐿𝑝,𝛼(𝐴) = inf {‖𝑓 − 𝒫‖𝐿𝑝,𝛼(𝐴): 𝒫 ∈ 𝜋𝑛} . 

The degree best upper (lower) trigonometrical approximation of order 𝑛 of the function 𝑓 ∈ 𝐿𝑝,𝛼(𝐴) is respectively given by  

𝐸𝑛
+(𝑓)𝐿𝑝,𝛼(𝐴) = inf{‖𝒫 − 𝑓‖𝐿𝑝,𝛼(𝐴): 𝒫 ∈ 𝜋𝑛 , 𝒫(𝑥) ≥ 𝑓(𝑥),   𝑥 ∈ 𝑅} 

𝐸𝑛
−(𝑓)𝐿𝑝,𝛼(𝐴) = inf{‖𝑓 − 𝒬‖𝐿𝑝,𝛼(𝐴): 𝒬 ∈ 𝜋𝑛 , 𝑓(𝑥) ≥ 𝒬(𝑥),   𝑥 ∈ 𝑅}. 

The best one-sided trigonometrical approximation of order n of the function 𝑓 ∈ 𝐿𝑝,𝛼(𝐴) is given by  

𝐸̃𝑛(𝑓)𝐿𝑝,𝛼(𝐴) = 𝑖𝑛𝑓 {‖𝒫 − 𝒬‖𝐿𝑝,𝛼(𝐴): 𝒫, 𝒬 ∈ 𝜋𝑛, 𝒫(𝑥) ≥ 𝑓(𝑥) ≥ 𝒬(𝑥), 𝑥 ∈ 𝑅}. 

Here we enlist some of the basic properties of the defined functions, which we need below. When some of the following 

propositions is valid for each of 𝐸𝑛
+(⋅)𝐿𝑝,𝛼(𝐴), 𝐸𝑛

−(⋅)𝐿𝑝,𝛼(𝐴) and 𝐸̃𝑛(⋅)𝐿𝑝,𝛼(𝐴). 

i) 𝐸𝑛(𝑓)𝐿𝑝,𝛼(𝐴) ≤ 𝐸̃𝑛(𝑓)𝐿𝑝,𝛼(𝐴), 𝐸̃𝑛(𝑓)𝐿𝑝,𝛼(𝐴) ≤ 2𝐸𝑛(𝑓)𝐿𝑝,𝛼(𝐴). 

ii) 𝐸̃𝑛(𝑓)𝐿𝑝,𝛼(𝐴) = 𝐸𝑛
+(𝑓)𝐿𝑝,𝛼(𝐴) + 𝐸𝑛

−(𝑓)𝐿𝑝,𝛼(𝐴). 
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iii) If 𝒫 ∈ 𝜋𝑛 , then 𝐸𝑛(𝑓 − 𝒫)𝐿𝑝,𝛼(𝐴) = 𝐸𝑛(𝑓)𝐿𝑝,𝛼(𝐴), 𝐸̃𝑛(𝑓 − 𝒫)𝐿𝑝,𝛼(𝐴) = 𝐸̃𝑛(𝑓)𝐿𝑝,𝛼(𝐴). 

iv) If 𝜆 > 0, then 𝐸(±𝜆𝑓)𝐿𝑝,𝛼(𝐴) = 𝜆𝐸𝑛(𝑓)𝐿𝑝,𝛼(𝐴), 𝐸̃𝑛(±𝜆𝑓)𝐿𝑝,𝛼(𝐴) = 𝜆𝐸̃𝑛(𝑓)𝐿𝑝,𝛼(𝐴). 

v) If 𝑔 ∈ 𝐿𝑝,𝛼(𝐴) , then  

𝐸𝑛(𝑓 + 𝑔)𝐿𝑝,𝛼(𝐴) ≤ ‖𝑔‖𝐿𝑝,𝛼(𝐴) + 𝐸𝑛
+(𝑓)𝐿𝑝,𝛼(𝐴). 

vi) The functions 𝐸̃𝑛(⋅)𝐿𝑝,𝛼(𝐴) and 𝐸𝑛(⋅)𝐿𝑝,𝛼(𝐴) are semi-additive. 

 

vii) There exist unique 𝒫 and 𝒬 in 𝜋𝑛 for which  

𝐸𝑛
+(𝑓)𝐿𝑝,𝛼(𝐴) = ‖𝒫 − 𝑓‖𝐿𝑝,𝛼(𝐴), 𝐸𝑛

−(𝑓)𝐿𝑝,𝛼(𝐴) = ‖𝑓 − 𝒬‖𝐿𝑝,𝛼(𝐴), 𝐸̃𝑛(𝑓)𝐿𝑝,𝛼(𝐴) = ‖𝒫 − 𝒬‖𝐿𝑝,𝛼(𝐴) 

 and 𝒫(𝑥) ≥ 𝑓(𝑥) ≥ 𝒬(𝑥) for any 𝑥 ∈ 𝑅. 

Proof: 

i) Consider 𝒫∗, 𝒫1, 𝒬1 ∈ 𝜋𝑛 are best approximation of 𝑓 ∈ 𝐿𝑝,𝛼(𝐴) s.t 𝒬1 ≤ 𝑓(𝑥) ≤ 𝒫1(𝑥) 

 𝑓(𝑥) ≤ 𝒬1(𝑥)  𝒫1(𝑥) ≤ 2𝑓(𝑥) 

 

𝐸𝑛(𝑓)𝐿𝑝,𝛼(𝐴) = 𝑖𝑛𝑓 {‖𝑓 − 𝒫‖𝐿𝑝,𝛼(𝐴): 𝒫 ∈ 𝜋𝑛} = ‖𝑓 − 𝒫
∗‖𝐿𝑝,𝛼(𝐴) = (∫ |(𝑓 − 𝒫∗)(𝑥)𝑤𝛼(𝑥)|

𝑝𝑑𝑥
𝜋

−𝜋

)

1 𝑝⁄

≤ (∫ |(𝒫 − 𝒬)(𝑥)𝑤𝛼(𝑥)|
𝑝𝑑𝑥

𝜋

−𝜋

)

1 𝑝⁄

= ‖𝒫 − 𝒬‖𝐿𝑝,𝛼(𝐴) = 𝐸̃𝑛(𝑓)𝐿𝑝,𝛼(𝐴), 

𝐸̃𝑛(𝑓)𝐿𝑝,𝛼(𝐴) = 𝑖𝑛𝑓‖𝒫 − 𝒬‖𝐿𝑝,𝛼(𝐴) = ‖𝒫1 − 𝒬1‖𝐿𝑝,𝛼(𝐴) = (∫ |(𝒫1 − 𝒬1)(𝑥)𝑤𝛼(𝑥)|
𝑝𝑑𝑥

𝜋

−𝜋

)

1 𝑝⁄

= (∫ |[𝒫1(𝑥) − 𝒬1(𝑥)]𝑤𝛼(𝑥)|
𝑝𝑑𝑥

𝜋

−𝜋

)

1 𝑝⁄

≤ (∫ |[2𝑓(𝑥) − 𝑓(𝑥)]𝑤𝛼(𝑥)|
𝑝𝑑𝑥

𝜋

−𝜋

)

1 𝑝⁄

= (∫ |[2𝑓(𝑥) − 𝒫∗(𝑥) + 𝒫∗(𝑥) − 𝑓(𝑥)]𝑤𝛼(𝑥)|
𝑝𝑑𝑥

𝜋

−𝜋

)

1 𝑝⁄

= (∫ |[2𝑓(𝑥) − 𝒫∗(𝑥)]𝑤𝛼(𝑥)|
𝑝𝑑𝑥

𝜋

−𝜋

)

1 𝑝⁄

+ (∫ |[𝑓(𝑥) − 𝒫∗(𝑥)]𝑤𝛼(𝑥)|
𝑝𝑑𝑥

𝜋

−𝜋

)

1 𝑝⁄

 

= ‖2𝑓 − 𝒫∗‖𝐿𝑝,𝛼(𝐴) + ‖𝑓 − 𝒫
∗‖𝐿𝑝,𝛼(𝐴) ≤ 2𝐸𝑛(𝑓)𝐿𝑝,𝛼(𝐴). 

ii)  

𝐸̃𝑛(𝑓)𝐿𝑝,𝛼(𝐴) = 𝑖𝑛𝑓‖𝒫 − 𝒬‖𝐿𝑝,𝛼(𝐴) = 𝑖𝑛𝑓 (∫ |(𝒫 − 𝒬)(𝑥)𝑤𝛼(𝑥)|
𝑝𝑑𝑥

𝜋

−𝜋

)

1 𝑝⁄

= 𝑖𝑛𝑓 (∫ |[𝒫(𝑥) − 𝒬(𝑥)]𝑤𝛼(𝑥)|
𝑝𝑑𝑥

𝜋

−𝜋

)

1 𝑝⁄

= 𝑖𝑛𝑓 (∫ |[𝒫(𝑥) − 𝑓(𝑥) + 𝑓(𝑥) − 𝒬(𝑥)]𝑤𝛼(𝑥)|
𝑝𝑑𝑥

𝜋

−𝜋

)

1 𝑝⁄

≤ 𝑖𝑛𝑓 (∫ |[𝒫(𝑥) − 𝑓(𝑥)]𝑤𝛼(𝑥)|
𝑝𝑑𝑥

𝜋

−𝜋

)

1 𝑝⁄

+ 𝑖𝑛𝑓 (∫ |[𝑓(𝑥) − 𝒬(𝑥)]𝑤𝛼(𝑥)|
𝑝𝑑𝑥

𝜋

−𝜋

)

1 𝑝⁄

= 𝑖𝑛𝑓 (∫ |(𝒫 − 𝑓)(𝑥)𝑤𝛼(𝑥)|
𝑝𝑑𝑥

𝜋

−𝜋

)

1 𝑝⁄

+ 𝑖𝑛𝑓 (∫ |(𝑓 − 𝒬)(𝑥)𝑤𝛼(𝑥)|
𝑝𝑑𝑥

𝜋

−𝜋

)

1 𝑝⁄

= ‖𝒫 − 𝑓‖𝐿𝑝,𝛼(𝐴) + ‖𝑓 − 𝒬‖𝐿𝑝,𝛼(𝐴) = 𝐸𝑛
+(𝑓)𝐿𝑝,𝛼(𝐴) + 𝐸𝑛

−(𝑓)𝐿𝑝,𝛼(𝐴). 

iii) 𝐸𝑛(𝑓 − 𝒫)𝐿𝑝,𝛼(𝐴) = 𝑖𝑛𝑓‖(𝑓 − 𝒫) − 𝒫‖𝐿𝑝,𝛼(𝐴) = 𝑖𝑛𝑓‖𝑓 − 2𝒫‖𝐿𝑝,𝛼(𝐴) = 𝐸𝑛(𝑓)𝐿𝑝,𝛼(𝐴), 

𝐸̃𝑛(𝑓 − 𝒫)𝐿𝑝,𝛼(𝐴) = 𝑖𝑛𝑓‖(𝑓 − 𝒫) − 𝒬‖𝐿𝑝,𝛼(𝐴) = 𝑖𝑛𝑓‖(𝑓 − (𝒫 + 𝒬)‖𝐿𝑝,𝛼(𝐴) = 𝐸̃𝑛(𝑓)𝐿𝑝,𝛼(𝐴). 
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iv) 𝐸𝑛(±𝜆𝑓)𝐿𝑝,𝛼(𝐴) = 𝑖𝑛𝑓‖(±𝜆𝑓) − (±𝜆𝒫)‖𝐿𝑝,𝛼(𝐴) = 𝑖𝑛𝑓 {(∫ |((±𝜆)(𝑓 − 𝒫))(𝑥)𝑤𝛼(𝑥)|
𝑝
𝑑𝑥

𝜋

−𝜋
)
1 𝑝⁄
} = 𝜆 𝑖𝑛𝑓 {(∫ |(𝑓 −

𝜋

−𝜋

𝒫)(𝑥)𝑤𝛼(𝑥)|
𝑝𝑑𝑥)

1 𝑝⁄
} = 𝜆𝐸𝑛(𝑓)𝐿𝑝,𝛼(𝐴), 

𝐸̃𝑛(±𝜆𝑓)𝐿𝑝,𝛼(𝐴) = 𝑖𝑛𝑓‖(±𝜆𝒫) − (±𝜆𝒬)‖𝐿𝑝,𝛼(𝐴) = 𝑖𝑛𝑓 {(∫ |((±𝜆)(𝒫 − 𝒬))(𝑥)𝑤𝛼(𝑥)|
𝑝
𝑑𝑥

𝜋

−𝜋

)

1 𝑝⁄

}

= 𝜆 𝑖𝑛𝑓 {(∫ |(𝒫 − 𝒬)(𝑥)𝑤𝛼(𝑥)|
𝑝𝑑𝑥

𝜋

−𝜋

)

1 𝑝⁄

} = 𝜆𝐸̃𝑛(𝑓)𝐿𝑝,𝛼(𝐴), 

v) 𝐸𝑛(𝑓 + 𝑔)𝐿𝑝,𝛼(𝐴) = 𝑖𝑛𝑓‖(𝑓 + 𝑔) − 𝒫‖𝐿𝑝,𝛼(𝐴) = 𝑖𝑛𝑓 {(∫ |((𝑓 + 𝑔) − 𝒫)(𝑥)𝑤𝛼(𝑥)|
𝑝
𝑑𝑥

𝜋

−𝜋
)
1 𝑝⁄
} = 𝑖𝑛𝑓 {(∫ |[(𝑓 +

𝜋

−𝜋

𝑔)(𝑥) − 𝒫(𝑥)]𝑤𝛼(𝑥)|
𝑝𝑑𝑥)

1 𝑝⁄
} = 𝑖𝑛𝑓(∫ |[𝑓(𝑥) + 𝑔(𝑥) − 𝒫(𝑥)]𝑤𝛼(𝑥)|

𝑝𝑑𝑥
𝜋

−𝜋
)
1 𝑝⁄

≤

𝑖𝑛𝑓(∫ |𝑔(𝑥)𝑤𝛼(𝑥)|
𝑝𝑑𝑥

𝜋

−𝜋
)
1 𝑝⁄

+ 𝑖𝑛𝑓(∫ |[𝒫(𝑥) − 𝑓(𝑥)]𝑤𝛼(𝑥)|
𝑝𝑑𝑥

𝜋

−𝜋
)
1 𝑝⁄

= 𝑖𝑛𝑓(∫ |𝑔(𝑥)𝑤𝛼(𝑥)|
𝑝𝑑𝑥

𝜋

−𝜋
)
1 𝑝⁄

+

𝑖𝑛𝑓(∫ |[(𝒫 − 𝑓)(𝑥)]𝑤𝛼(𝑥)|
𝑝𝑑𝑥

𝜋

−𝜋
)
1 𝑝⁄

= ‖𝑔‖𝐿𝑝,𝛼(𝐴) + 𝐸𝑛
+(𝑓)𝐿𝑝,𝛼(𝐴). 

vi) We note from (iii) and (v) that 𝐸̃𝑛(⋅)𝐿𝑝,𝛼(𝐴) and 𝐸𝑛(⋅)𝐿𝑝,𝛼(𝐴) are semi-additive. 

vii) If 𝒬(𝑥) ≤ 𝑓(𝑥) ≤ 𝒫(𝑥) we need to prove that the a uniqueness 𝒬(𝑥) and 𝒫(𝑥), 

so, let 𝒬΄(𝑥) ≤ 𝑓(𝑥) ≤ 𝒫΄(𝑥)  ∋ 𝒬΄(𝑥) ≤ 𝒬𝑛(𝑥) & 𝒫΄(𝑥)  ≤ 𝒫(𝑥) 

⟹ 𝒬΄(𝑥) ≤ 𝒬(𝑥) ≤ 𝑓(𝑥) ≤ 𝒫΄(𝑥)  ≤ 𝒫(𝑥) 

⇒ 𝒫(𝑥) has a unique sub polynomial it is itself 

⟹ 𝒫΄(𝑥) = 𝒫(𝑥) & 𝒬΄(𝑥) = 𝒬(𝑥). 

Let 𝑓 and 𝑔 be 2𝜋 −periodic integrable functions. Then convolution of 𝑓 and 𝑔 is  

𝑔 ∗ 𝑓(𝑥) =
1

2𝜋
∫ 𝑔(𝑥, 𝑥 − 𝑢)𝑓(𝑥, 𝑢)𝑑𝑢
𝜋

−𝜋

. 

We shall use the following property of convolutions: if 𝑔 = 𝑔(𝑥), 𝑔 ∈ 𝐿1(𝐴), 𝑓 ∈ 𝐿𝑝,𝛼(𝐴), then 

‖𝑔 ∗ 𝑓‖𝐿𝑝,𝛼(𝐴) ≤
1

2𝜋
 ‖𝑔‖𝐿1(𝐴)‖𝑓‖𝐿𝑝,𝛼(𝐴). 

The first Bernoulli functions denoted by 𝐵𝛼(𝑥) , 𝛼 ≥ 0 where  

𝐵0(𝑠) ≡ 1, 

𝐵1(𝑠) = 2∑
sin 𝑣𝑠

𝑠

∞

𝑣=1

= {
𝜋 − 𝑠,    0 < 𝑠 < 2𝜋

0,    𝑠 = 0.
 

2. Auxiliary lemmas 

Lemma 2.1. If 𝑩𝜶𝒇 ∈ 𝑳𝟏(𝑨) then  

𝑓(𝑥) = 𝑎0 + 𝐵𝛼 ∗ 𝐷𝑓(𝑥), 

where  

𝑎0 =
1

2𝜋
∫ 𝑓(𝑥)𝑤𝛼(𝑥)𝑑𝑥
𝜋

−𝜋

. 

Lemma 2.2. Let 𝐷𝑓 ∈ 𝐿𝑝,𝛼(𝐴) then  

‖𝐵𝛼 ∗ 𝐷𝑓‖𝐿𝑝,𝛼(𝐴) ≤ 𝑐‖𝑓‖𝐿𝑝,𝛼(𝐴), 

where 𝑐 is positive constant and ∗ is the convolution of 𝐵𝛼 and 𝐷𝑓. 

The proofs of these two lemmas are routine and can be made by induction. 

Lemma 2.3. Let 𝑛 be a natural number. Then 𝐸̃𝑛(𝐵1)1 = 4𝜋
2 𝑛⁄ , i.e. there exist two trigonometrical polynomials 

𝑇𝑛 and 𝑡𝑛 of order 𝑛 − 1 such that: 

(i) 𝑇𝑛(𝑠) ≥ 𝐵1(𝑠) ≥ 𝑡𝑛(𝑠),   𝑠 ∈ 𝑅, 
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(ii) ‖𝑇𝑛 − 𝑡𝑛‖𝐿𝑝,𝛼(𝐴) = 4𝜋
2 𝑛⁄ . 

Proof. In order to prove the lemma we shall construct trigonometrical polynomials with certain interpolator 

properties. Afterwards we show that these are the extremal polynomials. 

Now 𝑇𝑛 is defined by the following conditions if 𝐵1(𝑠) = 𝜋 − 𝑠, 0 < 𝑠 < 2𝜋, 

𝑇𝑛(2𝜋𝑘 𝑛⁄ ) = 𝐵1(2𝜋𝑘 𝑛⁄ ),        𝑘 = 1,2,… , 𝑛, 

𝑇′𝑛(2𝜋𝑘 𝑛⁄ ) = 𝐵′1(2𝜋𝑘 𝑛⁄ ) = 1, 𝑘 = 1,2, … , 𝑛 − 1. 

The existence of a polynomial with these properties is evident. The polynomial 𝑡𝑛 is defined by  

𝑡𝑛(2𝜋𝑘 𝑛⁄ ) = 𝐵1(2𝜋𝑘 𝑛⁄ ),        𝑘 = 1,2,… , 𝑛 − 1, 

𝑡′𝑛(2𝜋𝑘 𝑛⁄ ) = 𝐵′1(2𝜋𝑘 𝑛⁄ ) = 1, 𝑘 = 1,2, … , 𝑛 − 1, 

or more simply by the observation that  

𝑡𝑛(𝑠) = −𝑇𝑛(2𝜋 − 𝑠) 

must hold. 

For future reference we remark that it follows from the definitions of 𝑇𝑛 and 𝑡𝑛 that  

𝑇𝑛(𝑠) − 𝑡𝑛(𝑠) = 2𝜋𝐹𝑛(𝑠) = 2𝜋𝑛
−2 (sin

1

2
𝑠)
−2

(sin
1

2
𝑛𝑠)

2

. 

This is evident since (𝑇𝑛 − 𝑡𝑛) 2𝜋⁄  has double zeros at the points 2𝜋𝑘 𝑛⁄ , 𝑘 = 1,2, … , 𝑛 − 1, and equals 1, for 𝑠 =
0, and these properties characterize the Fej𝑒́r kernel 𝐹𝑛 among the trigonometrical polynomials of order 𝑛 − 1. 

Lemma 2.4.  we have  

𝐵𝛼 − (𝑡𝑛)𝛼 = 𝐵𝛽(𝐵𝛼 − (𝑡𝑛)𝛼), 

such that 𝛼, 𝛽 ≥ 0 and 𝛼 < 𝛽. 

The proof of this combinatory Lemma can be done by induction. 

The following Lemma is a well-known tool for intermediate approximation in the classical approximation theory: 

Lemma 2.5. Let 𝑓 ∈ 𝐿𝑝,𝛼(𝐴) and 𝑘 and 𝑛 be natural numbers and 𝛿 > 0. There exists 𝑓𝑘,𝑛 ∈ 𝐿𝑝,𝛼(𝐴) with the 

properties: 

a)|𝑓𝑘,𝑛(𝑥) − 𝑓(𝑥)| ≤ 𝜔𝑘(𝑓, 𝑥, 2 𝑛⁄ ), 𝑥 ∈ 𝑅, 

b)‖𝑓𝑘,𝑛 − 𝑓‖𝐿𝑝,𝛼(𝐴)
≤ 𝑐(𝑘, 𝛿)𝜔𝑘(𝑓, 1 𝑛⁄ )𝐿𝑝,𝛼(𝐴), 

c)we have 

‖𝐷𝑓𝑘,𝑛‖𝐿𝑝,𝛼(𝐴)
≤ 𝑐(𝑘, 𝛿)𝑛𝜔𝑘(𝑓, 1 𝑛⁄ )𝐿𝑝,𝛼(𝐴). 

We shall use an analogue of this Lemma with the restriction that the function 𝑓𝑘,𝑛 is over the function 𝑓. As a 

consequence at the place of 𝜔𝑟(𝑓, 1 𝑛⁄ )𝐿𝑝,𝛼(𝐴) will appear 𝜏𝑟(𝑓, 1 𝑛⁄ )𝐿𝑝,𝛼(𝐴). 

Lemma 2.6. Let 𝑓 ∈ 𝐿𝑝,𝛼(𝐴) and 1 ≤ 𝑝 < ∞. For any natural numbers 𝑘 and 𝑛 there is a function 𝐹𝑘,𝑛 with the 

properties: 

a) 0 ≤ 𝐹𝑘,𝑛(𝑥) − 𝑓(𝑥) ≤ 2
𝑘𝛿−𝑘+1𝜔𝑘(𝑓, 𝑥, (2𝑘𝛿 + 8𝜋) 𝑘𝑛⁄ ) and 

b) ‖𝐹𝑘,𝑛 − 𝑓‖𝐿𝑝,𝛼(𝐴)
≤ 𝑐(𝑘, 𝛿)𝜏𝑘(𝑓, 1 𝑛⁄ )𝐿𝑝,𝛼(𝐴)  

c) we have  

‖𝐷𝐹𝑘,𝑛‖𝐿𝑝,𝛼(𝐴)
≤ 𝑐(𝑘, 𝛿)𝑛𝜏𝑘(𝑓, 1 𝑛⁄ )𝐿𝑝,𝛼(𝐴). 
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Proof. Let 𝐴𝑛 = {𝑎: 𝑎 = (
2𝜋

𝑛
𝑎) , 𝑎 −integer}. Let 𝜓𝑛 be an infinitely many times differentiable function with the 

properties: 

1. 0 ≤ 𝜓𝑛(𝑥) ≤ 1 for every 𝑥 ∈ 𝑅, 

2. 𝜓𝑛(𝑥) = 0 for |𝑥| ≥ 2𝜋 𝑛⁄ , 

3.  

∑ 𝜓𝑛(𝑥 − 𝑎) = 1.

𝑎∈𝐴𝑛

 

4. we have  

|𝐷𝜓𝑛(𝑥)| ≤ 𝑐𝑛. 

Such functions exist, for example we can take 

𝜓𝑛(𝑥) = Φ𝑛(𝑥) ∑ Φ𝑛(𝑥 − 𝑎)

𝑎∈𝐴𝑛

⁄ , 

where 

Φ𝑛(𝑥) = {
exp(−1 (1 − 4𝜋2𝑥2 𝑛2⁄ )⁄ ),     |𝑥| < 2𝜋 𝑛⁄ ,

0,                       |𝑥| ≥ 2𝜋 𝑛⁄ .
 

Let 𝑣 = 𝑘𝛿 and let us consider the function  

𝐹𝑘,𝑛(𝑥) = 𝑓𝑣,𝑛(𝑥) + ∑ 𝜔𝑣(𝑓, 𝑎, (2𝑣 + 4𝜋) 𝑣𝑛⁄ )𝜓𝑛(𝑥 − 𝑎)

𝑎∈𝐴𝑛

, 

where 𝑓𝑣,𝑛 is the corresponding function from Lemma 2.5. 

The function 𝐹𝑘,𝑛 is well-defined for every 𝑥, because for every 𝑥 in the sum on the right-hand side only a finite 

number of terms are different from zero (see property 2 of the function 𝜓𝑛). Let us show that the function 𝐹𝑘,𝑛 

satisfies the conditions of the Lemma. 

Let 𝑥 ∈ 𝑅. Denoting 𝐴𝑛(𝑥) = {𝑎: 𝑎 ∈ 𝐴𝑛, |𝑥 − 𝑎| ≤
2𝜋

𝑛
} we have  

𝐹𝑘,𝑛(𝑥) − 𝑓(𝑥) = 𝑓𝑣,𝑛(𝑥) − 𝑓(𝑥) + ∑ 𝜔𝑣(𝑓, 𝑎, (2𝑣 + 4𝜋) 𝑣𝑛⁄ )𝜓𝑛(𝑥 − 𝑎)

𝑎∈𝐴𝑛(𝑥)

≥ 

(since 𝜓𝑛(𝑥 − 𝑎) ≠ 0 only for 𝑎 ∈ 𝐴𝑛(𝑥)) 

≥ −𝜔𝑣(𝑓, 𝑥, 2 𝜋⁄ ) + min
𝑎∈𝐴𝑛(𝑥)

𝜔𝑣(𝑓, 𝑎, (2𝑣 + 4𝜋) 𝑣𝑛⁄ ) 

≥ −𝜔𝑣(𝑓, 𝑥, 2 𝑛⁄ ) + 𝜔𝑣(𝑓, 𝑥, 2 𝑛⁄ ) = 0 

since for every 𝑎 ∈ 𝐴𝑛(𝑥). 

On the other hand, 

𝐹𝑘,𝑛(𝑥) − 𝑓(𝑥) ≤ 𝜔𝑣(𝑓, 𝑥, 2 𝑛⁄ ) + max
𝑎∈𝐴𝑛(𝑥)

𝜔𝑣(𝑓, 𝑎, (2𝑣 + 4𝜋) 𝑣𝑛⁄ ) 

≤ 𝜔𝑣(𝑓, 𝑥, 2 𝑛⁄ ) + 𝜔𝑣(𝑓, 𝑥, (2𝑣 + 8𝜋) 𝑣𝑛⁄ ) ≤ 2𝑘𝛿−𝑘+1𝜔𝑘(𝑓, 𝑥, (2𝛿𝑘 + 8𝜋) 𝑘𝑛⁄ ). 

Then b) follows from a) taking the 𝐿𝑝,𝛼(𝐴) −norm of both sides. At the end, using property 4) of 𝜓𝑛 we have  

|𝐷𝐹𝑘,𝑛(𝑥)| ≤ |𝐷𝑓𝑣,𝑛(𝑥)| + ∑ 𝜔𝑣(𝑓, 𝑎, (2𝑣 + 4𝜋) 𝑣𝑛⁄ |𝐷𝜓𝑛(𝑥 − 𝑎)|

𝑎∈𝐴𝑛(𝑥)

 

≤ |𝐷𝑓𝑣,𝑛(𝑥)| + 𝑐𝜔𝑣(𝑓, 𝑥, (2𝑣 + 8𝜋) 𝑣𝑛⁄ ) ∑ 1

𝑎∈𝐴𝑛(𝑥)

. 
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Taking 𝐿𝑝,𝛼(𝐴) −norm from the both sides, using the property c) of 𝑓𝑣,𝑛 and the fact that we have only a finite 

number of terms on the right hand side, we obtain c), with constant 𝑐 = 𝑐(𝑘, 𝛿).  

Lemma 2.7. Let 𝑓 ∈ 𝐿𝑝,𝛼(𝐴),   1 ≤ 𝑝 < ∞. Then  

𝐸𝑛
+(𝑓)𝐿𝑝,𝛼(𝐴) ≤ 𝑐𝜏1(𝑓, 1 𝑛⁄ )𝐿𝑝,𝛼(𝐴). 

Proof. Set 𝑥𝑖 = 𝑖𝜋𝑛
−1, 𝑖 = 0,… ,2𝑛  , 𝑦𝑖 = (𝑥𝑖−1 + 𝑥𝑖) 2⁄ , 𝑖 = 1,… ,2𝑛  , 𝑦2𝑛+1 = 𝑦1 and define the 2𝜋 −periodic 

functions 𝑆𝑛 and 𝐽𝑛 as follows: 

𝑆𝑛(𝑥) =

{
 
 

 
 

sup
𝑡∈[𝑥𝑖−1,𝑥𝑖]

𝑓(𝑡)     𝑓𝑜𝑟    𝑥 = 𝑦𝑖 ,              𝑖 = 1,… ,2𝑛,

max{𝑆𝑛(𝑦𝑖), 𝑆𝑛(𝑦𝑛+1)}   𝑓𝑜𝑟  𝑥 = 𝑥𝑖  , 𝑖 = 1,… ,2𝑛,

𝑆𝑛(−𝜋) = 𝑆𝑛(𝜋),                                                    
𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑛𝑑 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑓𝑜𝑟  𝑥 ∈ [𝑥𝑖−1, 𝑦𝑖]

𝑎𝑛𝑑 𝑥 ∈ [𝑦𝑖 , 𝑥𝑖],                        𝑖 = 1,… ,2𝑛  .

 

𝐽𝑛(𝑥) =

{
 
 

 
 

𝑖𝑛𝑓
𝑡∈[𝑥𝑖−1,𝑥𝑖]

𝑓(𝑡)     𝑓𝑜𝑟    𝑥 = 𝑦𝑖 ,              𝑖 = 1,… ,2𝑛,

𝑚𝑖𝑛{𝐽𝑛(𝑦𝑖), 𝐽𝑛(𝑦𝑛+1)}   𝑓𝑜𝑟  𝑥 = 𝑥𝑖  , 𝑖 = 1,… ,2𝑛,

𝐽𝑛(−𝜋) = 𝐽𝑛(𝜋),                                                    
𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑛𝑑 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑓𝑜𝑟  𝑥 ∈ [𝑥𝑖−1, 𝑦𝑖]

𝑎𝑛𝑑 𝑥 ∈ [𝑦𝑖 , 𝑥𝑖],                        𝑖 = 1,… ,2𝑛.

 

Clearly, we have  

𝐽𝑛(𝑥) ≤ 𝑓(𝑥) ≤ 𝑆𝑛(𝑥),   𝑥 ∈ [−𝜋, 𝜋].                                             (3)                                   

The derivatives 𝑆′𝑛(𝑥) 𝑎𝑛𝑑  𝐽′𝑛(𝑥) 𝑜𝑓 𝑆𝑛 𝑎𝑛𝑑 𝐽𝑛 exist at each point of the interval [−𝜋, 𝜋] except the points 𝑥𝑖, 𝑖 =
0,… ,2𝑛 , 𝑦𝑖 , 𝑖 = 1,… ,2𝑛. Moreover, using the definitions of the functions 𝑆𝑛  and 𝐽𝑛, we immediately have  

|𝑆′𝑛(𝑥)| ≤ 2𝑛𝜋
−1𝜔1(𝑓, 𝑥;4𝜋𝑛

−1), 𝑥 ≠ 𝑥𝑖, 𝑦𝑖 ,                                            (4) 

|𝐽′𝑛(𝑥)| ≤ 2𝑛𝜋
−1𝜔1(𝑓, 𝑥;4𝜋𝑛

−1), 𝑥 ≠ 𝑥𝑖, 𝑦𝑖 , 

(e.g. , if 𝑥 ∈ (𝑦𝑖 , 𝑥𝑖),  then as 𝑆𝑛 is linear we have  

|𝑆′𝑛(𝑥)| ≤ 2𝑛𝜋
−1|𝑆𝑛(𝑦𝑖+1) − 𝑆𝑛(𝑦𝑖)| ≤ 2𝑛𝜋

−1𝜔1(𝑓, 𝑥;4𝜋𝑛
−1)), 

and moreover,  

 0 ≤ 𝑆𝑛(𝑥) − 𝐽𝑛(𝑥) ≤ 𝜔1(𝑓, 𝑥;2𝜋𝑛
−1).                                                (5) 

It follows from (3) that  

‖𝑆′𝑛(𝑥)‖𝐿𝑝,𝛼(𝐴) ≤ 2𝑛𝜋
−1𝜏1(𝑓;4𝜋𝑛

−1)𝐿𝑝,𝛼(𝐴),                                            (6) 

‖𝐽′𝑛(𝑥)‖𝐿𝑝,𝛼(𝐴) ≤ 2𝑛𝜋
−1𝜏1(𝑓;4𝜋𝑛

−1)𝐿𝑝,𝛼(𝐴). 

Moreover, (4) gives  

‖𝑆𝑛 − 𝐽𝑛‖𝐿𝑝,𝛼(𝐴) ≤ 𝜏1(𝑓;2𝜋𝑛
−1)𝐿𝑝,𝛼(𝐴).                                                (7) 

Using 𝐸𝑛
+(𝑓)𝐿𝑝,𝛼(𝐴) ≤ 𝑐𝑛

−1‖𝑓‖𝐿𝑝,𝛼(𝐴)we obtain from (5) 

𝐸𝑛
+(𝑆𝑛)𝐿𝑝,𝛼(𝐴) ≤ 𝑐(1)𝜏1(𝑓;4𝜋𝑛

−1)𝐿𝑝,𝛼(𝐴);    𝐸𝑛
+(𝐽𝑛)𝐿𝑝,𝛼(𝐴) ≤ 𝑐(1)𝜏1(𝑓;4𝜋𝑛

−1)𝐿𝑝,𝛼(𝐴).                              (8) 

The following inequality is obvious: 

𝐸𝑛
+(𝑓)𝐿𝑝,𝛼(𝐴) ≤ 𝐸𝑛

+(𝑆𝑛)𝐿𝑝,𝛼(𝐴) + ‖𝑆𝑛 − 𝐽𝑛‖𝐿𝑝,𝛼(𝐴) + 𝐸𝑛
+(𝐽𝑛)𝐿𝑝,𝛼(𝐴).                                                            (9) 

From (7)-(9) we obtain 

𝐸𝑛
+(𝑓)𝐿𝑝,𝛼(𝐴) ≤ 2𝑐(1)𝜏1(𝑓;4𝜋𝑛

−1)𝐿𝑝,𝛼(𝐴) + 𝜏1(𝑓;2𝜋𝑛
−1)𝐿𝑝,𝛼(𝐴) ≤ 𝑐𝜏1(𝑓;𝑛

−1)𝐿𝑝,𝛼(𝐴). 
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Lemma 2.8. [24]. Let 𝑟 be a natural number, 𝑟 ≥ 𝑚, and 𝐷𝛼𝑓 ∈ 𝐿𝑝 for |𝛼| ≤ 𝑟, 1 ≤ 𝑝 < ∞. Then there exists a 

polynomial 𝑆 ∈ 𝜋𝑛 such that  

‖𝐷𝛽(𝑓 − 𝑆)‖
𝐿𝑝
≤ 𝑐(𝑚, 𝑟)𝑛|𝛽|−𝑟 ∑ ‖𝐷𝛼𝑓‖𝐿𝑝

|𝛼|=𝑟

 

For every multi-index 𝛽 such that |𝛽| ≤ 𝑟. 

Remark. Similarly for every two functions 𝑓+, 𝑓−, 𝑓+ ≥ 𝑓 ≥ 𝑓− we obtain  

Lemma 2.9. Let 𝑓 ∈ 𝐿𝑝,𝛼(𝐴), 𝑓
+ ∈ 𝐿𝑝,𝛼(𝐴), 𝑓

− ∈ 𝐿𝑝,𝛼(𝐴) and 𝑓+ ≥ 𝑓 ≥ 𝑓−. Then  

𝜏𝑘(𝑓, 𝛿)𝐿𝑝,𝛼(𝐴) ≤ 𝜏𝑘(𝑓
+, 𝛿)𝐿𝑝,𝛼(𝐴) + 𝜏𝑘(𝑓

−, 𝛿)𝐿𝑝,𝛼(𝐴) + 2
𝑘−1𝜏1(𝑓

+ − 𝑓−, 𝑘𝛿)𝐿𝑝,𝛼(𝐴) + 2
𝑘−1‖𝑓+ − 𝑓−‖𝐿𝑝,𝛼(𝐴). 

we have:  

𝜏1(𝒫𝑛 −𝒬𝑛, 𝑘𝛿)𝐿𝑝,𝛼(𝐴) ≤ 2(𝑘𝛿)‖𝐷(𝒫𝑛 − 𝒬𝑛)‖𝐿𝑝,𝛼(𝐴).                                  (10) 

Since ‖𝐷(𝒫𝑛 − 𝒬𝑛)‖𝐿𝑝,𝛼(𝐴) ≤ 𝑛‖𝒫𝑛 − 𝒬𝑛‖𝐿𝑝,𝛼(𝐴) ( 𝒫𝑛, 𝒬𝑛 ∈ 𝜋𝑛) we obtain from (5): 

𝜏1(𝒫𝑛 −𝒬𝑛, 𝑘𝛿)𝐿𝑝,𝛼(𝐴) ≤ 2(𝑘𝛿𝑛)‖𝒫𝑛 − 𝒬𝑛‖𝐿𝑝,𝛼(𝐴) = 2𝐸̃𝑛(𝑓)𝐿𝑝,𝛼(𝐴)(𝑘𝛿𝑛).                       (11) 

From (4) we obtain: 

𝜏𝑘(𝑓, 𝛿)𝐿𝑝,𝛼(𝐴) ≤ 𝜏𝑘(𝒫𝑛, 𝛿)𝐿𝑝,𝛼(𝐴) + 𝜏𝑘(𝑄𝑛, 𝛿)𝐿𝑝,𝛼(𝐴) + 2
𝑘−1 (1 + 2(𝑘𝛿𝑛)𝐸̃𝑛(𝑓))

𝐿𝑝,𝛼(𝐴)
.                       (12) 

Let us estimate 𝜏𝑘(𝒫𝑛, 𝛿)𝐿𝑝,𝛼(𝐴) (the estimation of 𝜏𝑘(𝒬𝑛, 𝛿)𝐿𝑝,𝛼(𝐴) follows the same way). Setting 𝑛 = 2𝑠0  and 

using property of 𝜏𝑘 , we have: 

𝜏𝑘(𝒫𝑛, 𝛿)𝐿𝑝,𝛼(𝐴) ≤ ∑ 𝜏𝑘(𝒫2𝑖 −𝒫2𝑖−1 , 𝛿)𝐿𝑝,𝛼(𝐴)
+ 𝜏𝑘(𝒫1 −𝒫0, 𝛿)𝐿𝑝,𝛼(𝐴)

𝑠0
𝑖=0 .                     (13) 

Since 𝑔 = 𝒫2𝑖 −𝒫2𝑖−1 ∈ 𝜋𝑛, we obtain: 

𝜏𝑘(𝑔, 𝛿)𝐿𝑝,𝛼(𝐴) ≤ 𝑐(𝑘, 𝛿)𝛿‖𝐷𝑔‖𝐿𝑝,𝛼(𝐴) ≤ 𝑐(𝑘, 𝛿)𝛿2
𝑖‖𝑔‖𝐿𝑝,𝛼(𝐴).                                 (14) 

Let 𝛿 = 𝑛−1 = 2−𝑠0 . Then 𝛿 ≤ 2−𝑖 for 𝑖 ≤ 𝑠0 and 𝛿2𝑖 ≤ 1. Therefore from (7) we obtain 

𝜏𝑘(𝒫2𝑖 −𝒫2𝑖−1 , 𝛿)𝐿𝑝,𝛼(𝐴)
≤ 𝑐1(𝑘, 𝛿)𝛿

𝑘2𝑖𝑘‖𝒫2𝑖 −𝒫2𝑖−1‖𝐿𝑝,𝛼(𝐴)
≤ 2𝑐1(𝑘, 𝛿)𝛿

𝑘2𝑖𝑘𝐸̃2𝑖−1(𝑓)𝐿𝑝,𝛼(𝐴),  (15) 

where the constant 𝑐1(𝑘, 𝛿) depends only on 𝑘 and 𝛿.  

From (6) and (8) we obtain (𝐸̃−1 ≡ 𝐸̃0, 𝛿 = 𝑛
−1) 

𝜏𝑘(𝒫𝑛, 𝑛
−1)𝐿𝑝,𝛼(𝐴) ≤∑2𝑐1(𝑘, 𝛿)𝑛

−𝑘2𝑖𝑘

𝑠0

𝑖=0

𝐸̃2𝑖−1(𝑓)𝐿𝑝,𝛼(𝐴) 

≤ 𝑐2(𝑘, 𝛿)𝑛
−𝑘 ∑ (𝑠 + 1)𝑘−1𝐸̃𝑠(𝑓)𝐿𝑝,𝛼(𝐴)

𝑛
𝑠=0 ,                         (16) 

where the constant 𝑐2(𝑘, 𝛿) depends only 𝑘 and 𝑚.  

Similarly  

 𝜏𝑘(𝒬𝑛, 𝑛
−1)𝐿𝑝,𝛼(𝐴) ≤ 𝑐3(𝑘, 𝛿)𝑛

−𝑘∑ (𝑠 + 1)𝑘−1𝐸̃𝑠(𝑓)𝐿𝑝,𝛼(𝐴)
𝑛
𝑠=0 .                          (17) 

Inequalities (4), (9) and (10) (for 𝛿 = 𝑛−1) give Theorem 3.2 in the case when 𝑛 = 2𝑠0 . Transition to arbitrary 𝑛 is 

standard. 

3. Main results 

We shall prove the following Jackson ’s type theorem for the best one variable one-sided approximations: 

Theorem 3.1. Let 𝑓 ∈ 𝐿𝑝,𝛼(𝐴) and 1 ≤ 𝑝 < ∞. For every natural number 𝑘 there exists a constant 𝑐(𝑘, 𝛿) 

depending only on 𝑘 and the one dimension 𝛿, such that 
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𝐸̃𝑛(𝑓)𝐿𝑝,𝛼(𝐴) ≤ 𝑐(𝑘, 𝛿)𝜏𝑘(𝑓, 1 𝑛⁄ )𝐿𝑝,𝛼(𝐴) 

Proof  

First we shall prove the case 𝑘 ≥ 1. Using the function 𝐹𝑘,𝑛 from Lemma 2.6, we get  

𝐸𝑛
+(𝑓 − 𝐹𝑘,𝑛 + 𝐹𝑘,𝑛)𝐿𝑝,𝛼(𝐴)

≤ ‖𝑓 − 𝐹𝑘,𝑛‖𝐿𝑝,𝛼(𝐴)
+ 𝐸𝑛

+(𝐹𝑘,𝑛)𝐿𝑝,𝛼(𝐴)
≤ 𝑐(𝑘, 𝛿)𝜏𝑘(𝑓, 1 𝑛⁄ )𝐿𝑝,𝛼(𝐴) + 𝐸𝑛

+(𝐹𝑘,𝑛)𝐿𝑝,𝛼(𝐴)
. 

To estimate 𝐸𝑛
+(𝐹𝑘,𝑛)𝐿𝑝,𝛼(𝐴)

 we use the polynomial from Lemma 2.8, Lemma 2.7, the estimate of the first averaged 

modulus by means of mixed derivatives, Lemma 2.8 and Lemma 2.6. We get  

𝐸𝑛
+(𝐹𝑘,𝑛)𝐿𝑝,𝛼(𝐴)

= 𝐸𝑛
+(𝐹𝑘,𝑛 − 𝑆)𝐿𝑝,𝛼(𝐴)

≤ 𝑐(𝛿)𝜏1(𝐹𝑘,𝑛 − 𝑆, 1 𝑛⁄ )
𝐿𝑝,𝛼(𝐴)

≤ 𝑐(𝛿)𝑛−1‖𝐷(𝐹𝑘,𝑛 − 𝑆)‖𝐿𝑝,𝛼(𝐴)
 

≤ 𝑐(𝑘, 𝛿)𝑛−𝑘‖𝐷𝐹𝑘,𝑛‖𝐿𝑝,𝛼(𝐴)
≤ 𝑐(𝑘, 𝛿)𝜏𝑘(𝑓, 1 𝑛⁄ )𝐿𝑝,𝛼(𝐴). 

We have obtained that for 𝑘 ≥ 𝛿 we have  

𝐸𝑛
+(𝑓)𝐿𝑝,𝛼(𝐴) ≤ 𝑐(𝑘, 𝛿)𝜏𝑘(𝑓, 1 𝑛⁄ )𝐿𝑝,𝛼(𝐴). 

In the case when 𝑘 < 𝛿 we use the fact that 𝜏𝛿(𝑓, 1 𝑛⁄ )𝐿𝑝,𝛼(𝐴) ≤ 𝑐(𝑘, 𝛿)𝜏𝑘(𝑓, 1 𝑛⁄ )𝐿𝑝,𝛼(𝐴) and therefore we have the 

needed inequality again. 

We end the proof with the following: 

𝐸̃𝑛(𝑓)𝐿𝑝,𝛼(𝐴) = 𝐸𝑛
+(𝑓)𝐿𝑝,𝛼(𝐴) + 𝐸𝑛

−(𝑓)𝐿𝑝,𝛼(𝐴) = 𝐸𝑛
+(𝑓)𝐿𝑝,𝛼(𝐴) + 𝐸𝑛

+(−𝑓)𝑛
≤ 𝑐(𝑘, 𝛿)𝜏𝑘(𝑓, 1 𝑛⁄ )𝐿𝑝,𝛼(𝐴) + 𝑐(𝑘, 𝛿)𝜏𝑘(−𝑓, 1 𝑛⁄ )𝐿𝑝,𝛼(𝐴) = 2𝑐(𝑘, 𝛿)𝜏𝑘(𝑓, 1 𝑛⁄ )𝐿𝑝,𝛼(𝐴). 

Theorem 3.2. Let 𝑓 ∈ 𝐿𝑝,𝛼(𝐴). For every natural number 𝑘 there exists a constant 𝑐(𝑘, 𝛿) depending only on 𝑘 and 

𝛿 such that  

𝜏𝑘(𝑓, 1 𝑛⁄ )𝐿𝑝,𝛼(𝐴) ≤ 𝑐(𝑘, 𝛿)𝑛−𝑘∑(𝑣 + 1)𝑘−1𝐸̃𝑣(𝑓)𝐿𝑝,𝛼(𝐴)

𝑛

𝑣=0

. 

Proof. Let for every natural number 𝑛 the trigonometrical polynomials 𝒫𝑛 ∈ 𝜋𝑛, 𝒬𝑛 ∈ 𝜋𝑛 be such that  

𝐸̃𝑛(𝑓)𝐿𝑝,𝛼(𝐴) = ‖𝒫𝑛 − 𝒬𝑛‖𝐿𝑝,𝛼(𝐴) 

𝒬𝑛(𝑥) ≤ 𝑓(𝑥) ≤ 𝒫𝑛(𝑥), 𝑥 ∈ 𝑅. 

Let 𝑥 ∈ 𝐴 be fixed and 𝑦, 𝑦 + 𝑘ℎ ∈ 𝐴. 

If 0 ≤ ∆ℎ
𝑘𝑓(𝑦), then  

0 ≤ ∆ℎ
𝑘𝑓(𝑦) =∑(−1)𝒿+𝑘 (

𝑘

𝒿
) 𝑓(𝑦 + 𝒿ℎ)

𝑘

𝒿=0

≤ ∑ (
𝑘

𝒿
)𝒫𝑛(𝑦 + 𝒿ℎ)

𝑘

𝒿=0

𝒿≡𝑘(𝑚𝑜𝑑 2)

− ∑ (
𝑘

𝒿
)𝒬𝑛(𝑦 + 𝒿ℎ)

𝑘

𝒿=0

𝒿≡𝑘−1(𝑚𝑜𝑑 2)

= ∆ℎ
𝑘𝒫𝑛(𝑦) − ∑ (

𝑘

𝒿
) (𝒬𝑛(𝑦 + 𝒿ℎ) − 𝒫𝑛(𝑦 + 𝒿ℎ))

𝑘

𝒿=0

𝒿≡𝑘−1(𝑚𝑜𝑑 2)

 

= ∆ℎ
𝑘𝒫𝑛(𝑦) + ∑ (

𝑘

𝑗
) [𝒫𝑛(𝑦 + 𝒿ℎ) − 𝒬𝑛(𝑦 + 𝒿ℎ) − (𝒫𝑛(𝑥) − 𝒬𝑛(𝑥))]

𝑘

𝒿=0

𝒿≡𝑘−1(𝑚𝑜𝑑 2)

+ ∑ (
𝑘

𝒿
) (𝒫𝑛(𝑥) − 𝒬𝑛(𝑥))

𝑘

𝒿=0

𝒿≡𝑘−1(𝑚𝑜𝑑 2)

≤ ∆ℎ
𝑘𝒫𝑛(𝑦) + 2

𝑘−1𝜔1(𝒫𝑛 −𝒬𝑛, 𝑥, 𝑘𝛿) + 2
𝑘−1(𝒫𝑛(𝑥) − 𝒬𝑛(𝑥)), 
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i.e.    

  0 ≤ ∆ℎ
𝑘𝑓(𝑦) ≤ ∆ℎ

𝑘𝒫𝑛(𝑦) + 2
𝑘−1𝜔1(𝒫𝑛 − 𝒬𝑛, 𝑥, 𝑘𝛿) + 2

𝑘−1(𝒫𝑛(𝑥) − 𝒬𝑛(𝑥)).                                     (18) 

Analogically in the case ∆ℎ
𝑘𝑓(𝑦) ≤ 0 we obtain: 

0 ≤ −∆ℎ
𝑘𝑓(𝑦) ≤ |∆ℎ

𝑘𝒬𝑛(𝑦)| + 2
𝑘−1𝜔1(𝒫𝑛 −𝒬𝑛, 𝑥, 𝑘𝛿) + 2

𝑘−1(𝒫𝑛(𝑥) − 𝒬𝑛(𝑥)).                                 (19)          

From (13) and (14) it follows : 

𝜔𝑘(𝑓, 𝑥, 𝛿) ≤ 𝜔𝑘(𝒫𝑛, 𝑥, 𝛿) + 𝜔𝑘(𝒬𝑛, 𝑥, 𝛿) + 2
𝑘−1𝜔1(𝒫𝑛 − 𝒬𝑛, 𝑥, 𝑘𝛿) + 2

𝑘−1(𝒫𝑛(𝑥) − 𝒬𝑛(𝑥)), 

e. g. 

𝜏𝑘(𝑓, 𝛿)𝐿𝑝,𝛼(𝐴) ≤ 𝜏𝑘(𝒫𝑛, 𝛿)𝐿𝑝,𝛼(𝐴) + 𝜏𝑘(𝒬𝑛, 𝛿)𝐿𝑝,𝛼(𝐴) + 2
𝑘−1𝜏1(𝒫𝑛 − 𝒬𝑛, 𝑘𝛿)𝐿𝑝,𝛼(𝐴) + 2

𝑘−1𝐸̃𝑛(𝑓)𝐿𝑝,𝛼(𝐴). (20) 

Theorems 3.1 and 3.2 give us  

Corollary 3.3. Let 𝑓 ∈ 𝐿𝑝,𝛼(𝐴). For 0 < 𝛼 < 𝑘, 1 ≤ 𝑝 < ∞, the following two conditions are equivalent: 

i) 𝜏𝑘(𝑓, 𝛿)𝐿𝑝,𝛼(𝐴) = 𝑂(𝛿
𝛼) 

ii) 𝐸̃𝑛(𝑓)𝐿𝑝,𝛼(𝐴) = 𝑂(𝑛
−𝛼). 

This Corollary gives characterization of the best one-sided trigonometrical approximations in 𝐿𝑝,𝛼(𝐴), 1 ≤ 𝑝 < ∞, 

by means of the averaged moduli of smoothness in the one-dimensional case. This characterization is similar to the 

classical characterization of the best trigonometrical approximations in 𝐿𝑝,𝛼(𝐴) by means  of the classical integral 

moduli of smoothness 𝜔𝑘(𝑓, 𝛿)𝐿𝑝,𝛼(𝐴). 

4. Conclusions 

In this study, we have found the degree of best one-sided trigonometrical approximation of unbounded functions for 

one variable in weighted 𝐿𝑝,𝛼(𝐴) −space in terms averaged modulus of smoothness. The direct theorem and inverse 

theorem of trigonometric polynomials have been proven, we obtain the equivalence. 
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