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A B S T R A C T 

     In this research, new morphological      nanostructures (Ns) prepared using a 

simple electrochemical anodization is described. The electrochemical process was 

carried out on Sn foils at a constant potential of 5 V for 10 min. To study the surface 

morphology effect on the photoactivity, the electrolyte concentration was chosen as 

the key factor using 1 mM and 5 mM. X-ray diffraction (XRD) disclosed tetragonal 

crystalline of     . Also, the surface morphologies imaged by a field-emission 

scanning electron microscope (FE-SEM) showed nanorocks and nanoparticles 

instead of traditional porous. Furthermore, fluorescence measurements revealed that 

the energy gap of      was 3.76 eV. The photocatalytic efficiency for the 

discoloration of methylene blue (MB) dye was found to be 94 % after 140 min of 

solar irradiation. The results confirmed the connection of photoactivity with the 

electrolyte concentration and suggest the ability to fabricate high photocatalyst 

nanostructures preparation using this technique. 

  .Keywords:  Electrochemical Anodization;     ; Methylene Blue Degradation. 

 

1. Introduction  

     Properties of nanostructured materials have become crucial to the future science and 

technology. Among these materials,      with a large band gap of 3.6 eV has been a 

strategic material due to its potential applications. It is a very stable material of high carrier 

density, which supports a wide range of applications like photocatalysts and gas sensors [1 – 

3]. Several techniques of preparing      Ns have been developed, including template-

assisted method, electrospinning, solution-based synthesis thermal evaporation, and 

electrochemical anodization [4 – 7]. The electrochemical anodization has attracted interest 
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due to its simplicity and low cost. However, the published works reported that anodization of 

Sn foil may result in nanoporous [8 – 11]. Also, degradation of organic pollutants such as MB 

dye was already experienced by      Ns depending on synthesis methods [12 – 14]. 

2. Materials and Methods   

     Sn foils of purity 99.9% were cut to disks of 3 cm in diameter. Then, they were cleaned by 

acetone in ultrasonic bath for 15 min and washed with distilled water. The experiments were 

achieved using two-electrode Teflon cell. The electrodes were the Sn foil sample as the anode 

and graphite rod as the cathode. The sample was mounted vertically in the cell body via a 

screw-like copper disk with a 4 cm separation from the cathode, as shown in Fig. 1. The 

electrolyte was a solution mixture of oxalic acid diluted by ethylene glycol. Two samples 

were prepared under anodization voltage of 5V and time of 10 min at 25 °C, whereas the 

concentration was adjusted to 1 mm for sample S1 and 5 mm for sample S2. After 

anodization, the samples were washed by distilled water for several times and dried thermally 

at 70 ℃. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Schematic illustration for the setup of the anodization experiment. 

 

 

 

3. Characterization  

The structural properties of the sample were tested by Philips X’Pert diffractometer, 

and their morphologies were imaged by MIRA3 TESCAN FE-SEM. Also, RF-5301 PC 

Shimadzu fluorophotometer was used to estimate the optical bandgap energies of the 

nanostructures by exciting with 280 nm light. 

 

 

 



67         Influence of Electrolyte Concentration on the Photocatalytic Property of Electrochemical Anodization of SnO2 

Nanostructures 

4. Photoactivity Tests 

The      samples with areas of 1 cm × 0.5 cm were immersed in a container of 7 ml 

of methylene blue dye in 1 L DW.  The UV-Vis measurements were calculated using UV-Vis 

(LI- 2800) spectrophotometer within wavelengths from 200 nm to 900 nm. Dark 

measurements were done without light subjection to ensure adsorption of the dye molecules 

on the samples. The degradation efficiency (Eff.) of MB was calculated by equation (1) [15]: 

 

    ( )  
      

  
                                                                                             (1) 

where    is the initial concentration of MB,    is the concentration of the irradiated dye for a 

certain time measured at a wavelength of 665 nm. 

 

5. Results and Discussion 

5.1 XRD measurements 

The XRD patterns of the sample S1, which was fabricated in 1 mm electrolyte is 

shown in Fig. 2A. All the diffraction peaks, which are located at 33.22°, 58.87°, 69.66°, and 

77.02° and related to the planes (101), (002), (311), and (321), respectively, are indexed as a 

tetragonal phase of      according to the JCPDS card number (41-1445). Also, the peak 

positions of the fabricated NS are in agreement with already reported work [16]. On the other 

hand, a tetragonal phase of SnO is applied to the diffraction planes (101), (200), (003), and 

(004) according to the card (JCPDS 06-0395). The results also agree with the reported results 

of Iqbal et al. [17]. The crystallite size (D) was calculated by Debye-Scherrer equation (2) 

below [18]. 

 

   
   

      
                                                                                                              (2) 

where the X-ray wavelength, the Bragg diffraction angle, and the full-width at half-maximum 

(FWHM) are denoted by λ, θ, and β, respectively. Thus, for sample S1, the average crystallite 

size was found to be 12.03 nm. 

The XRD pattern of sample S2, which was fabricated in 5 mM electrolyte, is shown 

in Fig. 2B. The diffraction planes (210), (220), (221), (112), and (212) are indexed in a 

tetragonal-rutile phase of     . Also, the diffraction plane (004) is indexed in tetragonal 

phase of SnO. Thus, the average crystallite size was found to be 88.15 nm. The dislocation 

densities of samples S1 and S2 calculated by equation (3) [18]. 

   
 

  
                                                                                                                     (3) 

 

 

and found to be 6.9           , 1.28           , respectively. These values indicate that 

the sample S2 has better crystalline quality than sample S1. Furthermore, all the XRD peaks 

of this sample are sharp, which indicates high crystalline quality.  
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Fig. 2: The XRD pattern of SnO and      Ns anodized at 5 V for 10 min using  

(A)1 mM of electrolyte for sample S1 and (B) 5 mM of electrolyte for sample S2. 

 

5.2 Morphological Properties 

     Figure 3 shows the FE-SEM images of tin oxide Ns. For sample S1, which was prepared 

by 1 mM electrolyte, formation of        NPs with sizes between 47 and 61 nm over cracks 

regions can be seen in Fig (3A, B). For samples S2, whose electrolyte concentration was 5 

mM, a spongy structure of nano-rocks with size of 71 - 89 nm is seen in Fig (3C, D). Thus, 

the structure morphology is highly changed when the concentration was changed. This 

behavior was previously studied and attributed to increase of oxygen evolution with more 

concentration [9]. 
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Fig. 3: The FE-SEM images of tin oxide Ns fabricated by electrochemical anodization in  

(A, B) 1 mM, and (C, D) 5 mM. 

 

 

     The EDX spectra, shown in Fig. 4, were performed to confirm the presence of the 

elements of the fabricated Ns. In sample S1, the peaks are related to the elements Sn (W% 

84.41), oxygen (O) (W% 9.04), nitrogen (N), carbon (C), and iodine (I), as shown in Fig. (4 

A). For sample S2, carbon defects are almost formed in the structure, decreasing the mount of 

the Sn element (W% 0.52), as shown in Fig. (4 B). According to the EDX spectra, the 

prepared nanostructures were confirmed to contain mainly Sn and O elements with small 

amounts of impurities, which could be added out of environment [19]. 

 

 

 

 

(A) (B) 
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Fig. 4: The EDX spectra of SnO and      Ns fabricated by anodizing a Sn foil.  

(A) sample S1 and (B) sample S2. 

 

Furthermore, the element mapping images of these samples, shown in Fig. 5, confirm the 

abundance of Sn and O elements. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5:  The element mapping of SnO and      Ns fabricated by anodization of Sn foil. (A) Sn 

element. (B) O element. 

 

 

5.3 Optical Properties 

     Fluorescence spectra were achieved to estimate the energy gaps of the nanostructures 

using RF-5301 PC Shimadzu fluorophotometer. By stimulating the samples with light of a 

wavelength of 280 nm, the transition energy was determined at room temperature., and then, 

the energy gaps were estimated from the fluorescent spectra. In both samples, there exist SnO 

peaks at 2.64 eV, which consistent with the reported results [20]. For      Ns, the peak seen 

at 3.93 eV refers to the blue-shifted energy gap when the particles size reduces due to 

quantum confinement effect. This finding is similar to the solvothermal synthesized      Ns 

[21]. With increasing the concentration to 5 mM, the      NS peak is seen in 3.37 eV, as 

shown in Fig. (6 B), which closes to the literatures of Ref [22, 23]. 

 

(A) (B) 
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Fig. 6: The optical energy gap of SnO and      Ns which were fabricated by anodizing a Sn foil. (A) 

sample S1 which was fabricated in 1 mM. (B) sample S2 which was fabricated in 5 mM. 

5.4. Photoactivity Measurements 

     Figure 7 illustrates the photodegradation spectra of       Ns, under sun irradiation of the 

MB dye for 140 min with intervals of 20 min. All the measurements were made by direct 

sunlight irradiation. For samples S1, the efficiency was calculated to be 85.83 % after 140 

min of sunlight exposure, as shown in Fig. (7 A). The photodegradation of sample S2, shown 

in Fig. (7 B), the degradation efficiency was calculated to be 94.84 %. Thus, much 

enhancement in the efficiency by increasing the electrolyte concentration to 5 mM 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7:  The MB dye photodegradation spectra by the      Ns which were fabricated by anodizing a 

Sn foil. (A) sample S1 which was fabricated in 1 mM. (B) sample S2 which was fabricated in 5 mM. 

The first-order rate kinetic constant ( ) for the MB dye degradation for time (t), shown in 

Fig. 8, was evaluated by equation (4) [24]: 

   (
 

  
)                                                                                                                  (4) 

The value of   was calculated to be              for sample S1 and 0.0240       for 

sample S2, which are large compared with similar previous studies [25]. In general, sample 

S2 particularly improves the MB dye ability to degrade.  
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Fig. 8: (A) Kinetic degradation of the MB dye by      Ns. (B) The first-order linear degradation rate 

of dye with time. 

 

     The high efficiency exhibited by sample S2 is a result of improving adsorption sites with 

more electron-hole separations [26]. Also, because of the low defect density, electron-hole 

recombination is decreased, with increasing the surface area, photoactivity was enhanced 

[27]. Thus,      Ns are considered efficient photocatalysts for the degradation of MB dye 

when compared with a number of published researches, as listed in Table 1. 

 

Table 1. Comparison of the photocatalytic efficiency of the submitted work with previous works. 

Technique   Materials Degradation 

Time (min) 

Photocatalytic 

Efficiency (%) 

Ref. 

Hydrothermal     nanospheres   210 40.64 [28] 

Green Synthesis Pristine mono 

metallic      NPs  

195 35.7 [29] 

Pulse laser 

Ablation-

Hydrothermal 

Spherical-like 

    Ns  

150 21.5 [15] 

Modified 

Precipitation 
    NPs 180 79 [30] 

Electrochemical 

Anodization 
    NPs 240 76.85 [19] 

Electrochemical 

Anodization 

    Ns 140 94.84 Submitted 

Work 
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6. Conclusions 

Unlike traditional preparation of      porous, an electrochemical anodization 

technique was used to fabricate      NPs. The electrolyte concentration was slightly 

changed to synthesis the nanoparticles, and thence, to enhance the photoactivity of the 

prepared NS. SnO and      nanorocks and nanoparticles with a tetragonal crystalline phase 

were obtained. The energy gap was found to expand up to 3.93 eV depending on the 

concentration. Hence, with increasing the electrolyte concentration from 1 mM to 5mM, the 

photodegradation efficiency was highly enhanced, which reaches 94 % after two hours of 

sunlight exposure. It is inferred the dependence of morphology as well as the photoactivity on 

the anodization electrolyte concentration. 
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