

MUSTANSIRIYAH JOURNAL OF PURE AND APPLIED SCIENCES

Journal homepage: https://mjpas.uomustansiriyah.edu.iq/index.php/mjpas

RESEARCH ARTICLE - MATHEMATICS

On supra^{*} ϱ_I – open sets , supra^{*} ϱ_I – continuous functions

Ghufran Hussein Auda^{*1}, Hula M. Salih²

¹General Education, Directorate of Wasit Province, Baghdad, Iraq

² Department of Mathematics, Collage of education, Mustansiriyah University, Baghdad, Iraq.

* Corresponding author E-mail: <u>ghufran.hussein468@uomustansiriyah.edu.iq</u>

Article Info.	Abstract
Article history:	The concept of supra* ϱ_I -open sets (Sup* ϱ_I -o.Set) is presented and used to define the concepts of weakly supra* ϱ_I -closed (weakly Sup* ϱ_I -c.Set), weakly supra* ϱ_I -continuous(W Sup* ϱ_I -
Received 15 April 2024	Cont.), weakly supra* ϱ_1 –neighborhood(W Sup* ϱ_1 -neigh), and weakly supra* ϱ_1 –irresolute(W Sup* ϱ_1 Irres). A few characterizations and features of these concepts are covered.
Accepted 25 May 2024	
Publishing 30 March2025	
This is an open-access article under the CC BY 4.0 license (<u>http://creativecommons.org/licenses/by/4.0/</u>) The official journal published by the College of Education at Mustansiriyah University	
Keywords: supra*Q ₁	-open, supra* ϱ_{I} -continuous, supra* ϱ_{I} -neighborhood, weakly supra* ϱ_{I} -open, weakly supra* ϱ_{I} -

Reywords: supra* ϱ_I -open, supra* ϱ_I -continuous, supra* ϱ_I -neighborhood, weakly supra* ϱ_I - irresolute, closed, weakly supra* ϱ_I – continuous, weakly supra* ϱ_I - neighborhood, weakly supra* ϱ_I - irresolute,

1. Introduction

Kuratowski [1] and Vaidyanathaswamy [2] have both researched the topic of ideals in topological spaces. Additionally, Jankovic and Hamlett [3] looked into the characteristics of ideal topological spaces. A.S.Mashhour et al. [4] introduced supra topological spaces in 1983. El-Sheikh [5] investigated the characteristics of supra topological space and developed the idea of supra closure operator, which is produced by a supra topological spaces. In 2012, S. SEKAR et al. [6] introduced the idea of supra ID-open sets and supra ID-continuous functions and looked into a number of their properties. A new supra topology from an old via ideal was introduced via Ali Kandil et al. in 2015 [7]. We have also talked about the characteristics of this supra topology. In this paper, we introduced the idea of weakly supra* $q_{\rm I}$ -closed sets, weakly supra* $q_{\rm I}$ -continuous sets, weakly supra* $q_{\rm I}$ neighborhood sets, and weakly supra* $q_{\rm I}$ - irresolute sets. A few characterizations and properties of these concepts are discussed.

Definition 2.1:[1]

A collection that isn't empty is ideal. If the ID of a subset of \mathcal{H} meets both of the following two requirements, it is said to be an Ideal on \mathcal{H} .

(1) When $0 \in ID$ and $P \subseteq O, P \in ID$ is implied.

(2) When $0 \in ID$ and $P \in ID$, $0 \cup P \in ID$ is implied.

Definition 2.2:[4]: A subset S for P(H) of non-empty set H be named a **supra topology on H** if S satisfy conditions :

1. S has \mathcal{H} and \emptyset in it.

2. S is closed under the arbitrary union

Supra topological space refers to the pair (\mathcal{H} ,Sup). The member of Sup is known as the supra open set(Sup o.Set) in (\mathcal{H} ,Sup) in this sense.

Definition 2.3:[4] Let Sup be the supra topology on \mathcal{H} and let (\mathcal{H}, τ) be a topological space. If $\tau \subseteq$ Sup, we referred to Sup as a supra topology related to τ .

Definition 2.4:[8] Assume that Z is a subset of a supra topological space (\mathcal{H} , Sup). The supra kernel of Z is the set {U \in Sup | $Z \subset$ U}, and it is represented by Sup-ker (Z).

Defintion2.5: [8] Let (H,S) be supra topology spaces and $K \subseteq H$.hence

1.*cl*_{sup}(K)=∩{F⊆H: F is supra closed set and K⊆F} is named the **supra-closure** of K∈P(H).

2.*int*_{sup}=U{C⊆X:C is supra open set and C⊆K} is named the **supra-interior** of K∈P(H)

Definition 2.6:[9] The (\mathcal{H} ,Sup,ID) is called **ideal supra topological space**(denoted by, **ID SUP TS**) if (X,Sup)supra topological space and ID is ideal on X

Definition2.7: [9] Assume that(\mathcal{H} ,Sup,ID) be ideal supra topological space, Z is subset of (\mathcal{H} ,Sup,ID),then Z is called to be **Supra Semi**_{ID}*-**open set**(denoted by **,Sup S**_{ID}***o.Set**) if and only if Z $\subset Cl_{sup}(Int_{sup}^*(Z))$ and a subset Z is called supra semi _{ID}* -close if it is complement is supra semi _{ID}* - opened.

Definition 2.8:[10] A function $f:(\mathcal{H}_1, \operatorname{Sup}_1, \operatorname{ID}) \rightarrow (\mathcal{H}_2, \operatorname{Sup}_2)$ is called **supra Semi**_{ID}***continuous**(denoted by, **Sup S**_{ID}*-**cont.**) if and only if the opposite image of any supra open set(Sup o.Set) in \mathcal{H}_2 is supra semi_{ID}-opened set(Sup S_{ID}-o.Set) in \mathcal{H}_1 .

Definition 2.9:[11] Aset Z is supra P_{I} - open (Sup P_{I} -o.Set) if $Z \subset Int^{*}_{sup}(Cl_{sup}(Z))$. The complement of supra P_{I}^{*} -open is called supra P_{I}^{*} -close (Sup P_{I}^{*} -c.Set).

Definition 2.10:[11] Let $(\mathcal{H}_1, \tau, \text{ ID })$ be ideal topological space(ID TS) and (\mathcal{H}_2, τ') be topological space(TS), Sup be an correlating supratopology with τ . **supra** P_1^* -**continuous function**(denoted by **,Sup P₁-cont.**) is the function $f: (\mathcal{H}_1, \text{ Sup, ID }) \rightarrow (\mathcal{H}_2, \tau')$. if the opposite image of any open set(o.Set) in \mathcal{H}_2 is a supra P_1 - open set(Sup P₁-o.Set) in \mathcal{H}_1 .

Definition 2.11: [12], [13] Let $(\mathcal{H}, \text{Sup}, \text{ID})$ be an ideal supra topological space(ID Sup TS) and $Z \subseteq \mathcal{H}$. if $Z \subseteq \text{Cl}_{\text{sup}}(\text{Int}_{\text{sup}}(\text{Cl}_{\text{sup}}^*(Z)))$.then Z is called is **supra** β_{I} **-open set**(denoted by **,Sup** β_{I} **-o.Set**).The complemented of supra β_{I} -open set is said supra β_{I} -close (denoted by **,Sup** β_{I} -c.Set).

Definition2.12: [12], [14] Let $(\mathcal{H}_1, \tau, \mathrm{ID})$ be ideal topological space(ID Ts) and (\mathcal{H}_2, τ) be topological space, Sup be an correlating supra topology with τ . $f: (\mathcal{H}_1, \mathrm{Sup}, \mathrm{ID}) \to (\mathcal{H}_2, \tau)$ is called **supra** β_{I} **-continuous function**(denoted by,**Sup** β_{I} **-cont.** F) if and only if the opposite image of any open set(o.Set) in \mathcal{H}_2 is supra β_{I} -open set(Sup β_{I} -o.Set) in \mathcal{H}_1 .

3. supra^{*}_{QI}-open set

Definition 3.1: A set Z is supra* ϱ_{I} -open set(denoted by, $\operatorname{Sup}*\varrho_{I}$ -o.Set) if $Z \subseteq \operatorname{Cl}_{\sup}(\operatorname{Int}_{\sup}^{*}(Z)) \cup \operatorname{Int}_{\sup}(\operatorname{Cl}_{\sup}^{*}(Z))$. The complement of supra* ϱ_{I} -open set is called supra* ϱ_{I} -close. The class of supra* ϱ_{I} -open set in X be indicated by $\operatorname{Sup}* \varrho_{I}O(\mathcal{H}, \operatorname{Sup}, \operatorname{ID})$.

Example 3.2: Let $\mathcal{H} = \{ c_1, c_2, c_3, c_4 \}$ with a supra Sup= $\{ \mathcal{H}, \emptyset, \{ c_2 \}, \{ c_1, c_3 \}, \{ c_1, c_2, c_3 \} \}$, ID= $\{ \emptyset, \{ c_2 \} \}$. Then the set $Z = \{ c_2, c_3 \}$ is supra* ϱ_1 -open.

Proposition 3.3: Let Z is a supra* ϱ_{I} -open such that $Int_{sup}^{*}(Z)=\emptyset$, then Z is supra P_{I}^{*} -open. The following is true for a subset of Ideal supra topological space:

1. Any supra S_I^* –open is also supra* ϱ_I - open.

2. Any supra P_I^* -open is also supra* ϱ_I -open,

3. Any supra* ϱ_I -open is also supra β_I -open.

Proof:

(1)and(2)Obvious.

(3)Assume Z be supra* ρ_{I} -opened. Next we have

 $Z \subseteq Cl_{sup}(Int_{sup}^{*}(Z)) \cup Int_{sup}(Cl_{sup}^{*}(Z)).$

 $\subseteq \operatorname{Cl}_{\sup}(\operatorname{Int}_{\sup}^{*}(Z)) \cup \operatorname{Int}_{\sup}(\operatorname{Int}_{\sup}^{*}(Z)).$

 $\subseteq \operatorname{Cl}_{\sup}(\operatorname{Int}_{\sup}^*(Z)) \cup \operatorname{Int}_{\sup}(\operatorname{Cl}_{\sup}^*(Z)).$

 $\subseteq \operatorname{Cl}_{\sup}[\operatorname{Int}_{\sup}(\operatorname{Int}_{\sup}^{*}(Z))\cup\operatorname{Cl}_{\sup}(Z).$

 $\subseteq \operatorname{Cl}_{\sup}[\operatorname{Int}_{\sup}[\operatorname{Cl}_{\sup}^*(Z \cup Z))]$

 $\subseteq \operatorname{Cl}_{\operatorname{sup}}(\operatorname{Int}_{\operatorname{sup}}(\operatorname{Cl}_{\operatorname{sup}}^*(Z))) .$

This show that Z is supra β_I -open set .

Example 3.4: Let $\mathcal{H}=\{c_1, c_2, c_3, c_4\}$ with a supra Sup= $\{\mathcal{H}, \emptyset, \{c_2\}, \{c_1, c_3\}, \{c_1, c_2, c_3\}\}$, ID= $\{\emptyset, \{c_2\}\}$. Then the set $Z = \{c_2, c_3\}$ is supra* ϱ_I -open, but is not supra S_I^* -open. As $Cl_{sup}(Int_{sup}^*(Z)) \cup Int_{sup}(Cl_{sup}^*(Z)) = Cl_{sup}(\emptyset) \cup Int_s(H) = \emptyset \cup \mathcal{H} = \mathcal{H} \supseteq Z$ and hence Z is supra* ϱ_I -opened. Since $Cl_{sup}(Int_{sup}^*(Z)) = Cl_{sup}(\emptyset) = \emptyset \supseteq Z$. Then Z is not supra S_I^* -open.

Example 3.5: Let $\mathcal{H} = \{\iota_1, \iota_2, \iota_3\}$ with a supra Sup= $\{\mathcal{H}, \emptyset, \{\iota_1\}, \{\iota_3\}, \{\iota_1, \iota_3\}\}$, ID= $\{\emptyset, \{\iota_2\}\}$. Then the set Z= $\{\iota_1, \iota_2\}$ is supra* ϱ_1 -opened, but is not supra P_I^*-opened Because $Cl_{sup}(Int_{sup}^*(Z)) \cup Int_{sup}(Cl_{sup}^*(Z)) = Cl_{sup}(\{\iota_3\}) \cup Int_{sup}(\{\iota_1, \iota_2\}) = \{\iota_2, \iota_3\} \cup \{\iota_1\} = \mathcal{H} \supseteq Z$ and hence Z is supra* ϱ_1 -opened. Since $Int_{sup}^*(Cl_{sup}(Z)) = Int_{sup}^*(\{\iota_1, \iota_2\}) = \{\iota_3\} \supseteq Z$. Then Z is not supra P_I^*-opened.

Example 3.6: Let $\mathcal{H} = \{\iota_1, \iota_2, \iota_3, \iota_4\}$ with a supra Sup= $\{\mathcal{H}, \emptyset, \{\iota_1, \iota_3\}, \{\iota_1, \iota_4\}, \{\iota_1, \iota_3, \iota_4\}\}$, ID= $\{\emptyset, \{\iota_2\}\}$. Then the set $Z = \{\iota_1, \iota_2\}$ is supra β_{I} -open, but is not supra* ϱ_{I} -open. Because $Cl_{sup}(Int_{sup}^*(Z)) \cup Int_{sup}(Cl_{sup}^*(Z)) = Cl_{sup}(\emptyset) \cup Int_{sup}(\{\iota_1, \iota_2, \iota_4\}) = \emptyset \cup \{\iota_1, \iota_4\} = \{\iota_1, \iota_4\} \not\supseteq Z$ and hence Z is not supra* ϱ_{I} -open. Since $Cl_{sup}(Int_{sup}(Cl_{sup}^*(Z))) = Cl_{sup}(Cl_{sup}^*(Z)) = Cl_{sup}(Int_{sup}(\{\iota_1, \iota_2, \iota_3\})) = Cl_{sup}(\{\iota_1, \iota_4\}) = \{\iota_1, \iota_4\}) = \{\iota_1, \iota_2, \iota_3\} \supseteq Z$. Hence Z is supra β_{I} -open.

Theorem3.7: Asubset Z of an Ideal supra topological space (\mathcal{H} ,Sup,ID) is supra* ϱ_{I} -close ,then $Cl_{sup}(Int_{sup}^{*}(Z)) \cap Int_{s}(Cl_{sup}^{*}(Z)) \subseteq Z$.

Proof: $\mathcal{H} - Z$ is supra* ϱ_{I} -open ,because Z is supra* ϱ_{I} -closed. This can be shown from the fact that τ^* is finer than τ and the fact that we have

 $\mathcal{H} - Z \subseteq \mathrm{Cl}_{\mathrm{sup}}(\mathrm{Int}_{\mathrm{sup}}^*(\mathcal{H} - Z)) \cup \mathrm{Int}_{\mathrm{sup}}(\mathrm{Cl}_{\mathrm{sup}}^*(\mathcal{H} - Z))$

$$\subseteq \operatorname{Cl}_{\sup}(\operatorname{Int}_{\sup}(\mathcal{H} - Z)) \cup \operatorname{Int}_{\sup}(\operatorname{Cl}_{\sup}(\mathcal{H} - Z))$$

$$= [\mathcal{H} - [\operatorname{Cl}_{\sup}(\operatorname{Int}_{\sup}(\mathcal{H} - Z))]] \cup [\mathcal{H} - [\operatorname{Int}_{\sup}(\operatorname{Cl}_{\sup}(\mathcal{H} - Z))]]$$

$$\subseteq [\mathcal{H} - [\operatorname{Cl}_{\sup}(\operatorname{Int}_{\sup}^{*}(\mathcal{H} - Z))]] \cup [\mathcal{H} - [\operatorname{Int}_{\sup}(\operatorname{Cl}_{\sup}^{*}(\mathcal{H} - Z))]]$$

$$= \mathcal{H} - [\operatorname{Cl}_{\sup}(\operatorname{Int}_{\sup}^{*}(\mathcal{H} - Z))]] \cup [\mathcal{H} - [\operatorname{Int}_{\sup}(\operatorname{Cl}_{\sup}^{*}(\mathcal{H} - Z))]]$$

Therefore, we obtain $\operatorname{Cl}_{\sup}(\operatorname{Int}_{\sup}^*(Z)) \cap \operatorname{Int}_{\sup}(\operatorname{Cl}_{\sup}^*(Z)) \subseteq Z$.

Corollary3.8: Let Z represent a subset of the ideal supra topological space $(\mathcal{H}, \operatorname{Sup}, \operatorname{ID})$ such that $\mathcal{H} - [\operatorname{Cl}_{\sup}(\operatorname{Int}_{\sup}^*(Z))] = \operatorname{Int}_{\sup}(\operatorname{Cl}_{\sup}^*(\mathcal{H} - Z))$ and $\mathcal{H} - [\operatorname{Int}_{\sup}(\operatorname{Cl}_{\sup}^*(Z))] = \operatorname{Cl}_{\sup}(\operatorname{Int}_{\sup}^*(\mathcal{H} - Z))$. Then Z is supra* ϱ_{I} -closed if and only if $[\operatorname{Cl}_{\sup}(\operatorname{Int}_{\sup}^*(Z)) \cap \operatorname{Int}_{\sup}(\operatorname{Cl}_{\sup}^*(Z))] \subseteq Z$.

Proof: This is the direct result of Theorem (3.6).

 $[\operatorname{Cl}_{\sup}(\operatorname{Int}_{\sup}^{*}(Z)) \cap \operatorname{Int}_{\sup}(\operatorname{Cl}_{\sup}^{*}(Z))] \subseteq Z.$

Then

$$\begin{aligned} \mathcal{H} - \mathsf{Z} &\subseteq \ \mathcal{H} - [\operatorname{Cl}_{\sup}(\operatorname{Int}^*_{\sup}(\mathsf{Z})) \cap \ \operatorname{Int}_{\sup}(\operatorname{Cl}^*_{\sup}(\mathsf{Z}))]]. \\ &\subseteq [\mathcal{H} - [\operatorname{Cl}_{\sup}(\operatorname{Int}^*_{\sup}(\mathsf{Z}))]] \cup [\mathcal{H} - [\operatorname{Int}_{\sup}(\operatorname{Cl}^*_{\sup}(\mathsf{Z}))]] \\ &= \operatorname{Cl}_{\sup}(\operatorname{Int}^*_{\sup}(\mathcal{H} - \mathsf{Z})) \cup \ \operatorname{Int}_{\sup}(\operatorname{Cl}^*_{\sup}\mathcal{H} - \mathsf{Z})) \end{aligned}$$

Thus $\mathcal{H} - Z$ is supra* ϱ_{I} -open and hence Z is supra* ϱ_{I} -closed.

Proposition 3.9: The union of any family of supra* ρ_{I} -open sets is a supra* ρ_{I} -open set.

Proof: Let $\{Z_{\alpha} / \alpha \in \Delta\}$ be a family of supra^{*} ϱ_{I} -open set,

$$Z_{\alpha} \subseteq Cl_{sup}(Int_{s}^{*}(Z_{\alpha})) \cup Int_{sup}(Cl_{sup}^{*}(Z_{\alpha}))$$

Hence

$$\begin{split} & \bigcup_{\alpha} Z_{\alpha} \subseteq \bigcup_{\alpha} [\mathrm{Cl}_{\sup}(\mathrm{Int}_{\sup}^{*}(Z_{\alpha})) \cup \mathrm{Int}_{\sup}(\mathrm{Cl}_{\sup}^{*}(Z_{\alpha}))] \\ & \subseteq \bigcup_{\alpha} [\mathrm{Cl}_{\sup}(\mathrm{Int}_{\sup}^{*}(Z_{\alpha}))] \cup \bigcup_{\alpha} [\mathrm{Int}_{\sup}(\mathrm{Cl}_{\sup}^{*}(Z_{\alpha}))] \\ & \subseteq [\mathrm{Cl}_{\sup}(\bigcup_{\alpha} (\mathrm{Int}_{\sup}^{*}(Z_{\alpha}))] \cup [\mathrm{Int}_{\sup}(\bigcup_{\alpha} (\mathrm{Cl}_{\sup}^{*}(Z_{\alpha}))] \\ & \subseteq [\mathrm{Cl}_{\sup}(\bigcup_{\alpha} (\mathrm{Int}_{\sup}^{*}(Z_{\alpha}))] \cup [\mathrm{Int}_{\sup}(\bigcup_{\alpha} (\mathrm{Cl}_{\sup}^{*}(Z_{\alpha}))] \\ & \subseteq [\mathrm{Cl}_{\sup}(\mathrm{Int}_{\sup}^{*}(\bigcup_{\alpha} Z_{\alpha}))] \cup [\mathrm{Int}_{\sup}(\mathrm{Cl}_{\sup}^{*}(\bigcup_{\alpha} Z_{\alpha}))] . \end{split}$$

 $U_{\alpha}Z_{\alpha}$ is supra* ϱ_{I} -open.

Remark 3.10: As the following example demonstrates, the intersection of even two supra* ρ_{I} -open sets need not be supra* ρ_{I} -open set.

Example3.11: $\mathcal{H} = \{\iota_1, \iota_2, \iota_3, \iota_4\}$ with a supra Sup= $\{\mathcal{H}, \emptyset, \{\iota_3\}, \{\iota_3, \iota_2, \iota_4\}\}$ and ID= $\{\emptyset, \{\iota_1\}, \{\iota_4\}, \{\iota_1, \iota_4\}\}$. Then the set $Z = \{\iota_1, \iota_3\}$ and B= $\{\iota_1, \iota_2\}$ are supra*b_I -open, but $Z \cap B = \{\iota_1\}$ is not supra*b_I-open

Definition 3.12: Let Z be a subset of \mathcal{H} .

1-supra* ϱ_1 -closure of Z is defined as the intersection of all supra* ϱ_1 -close containing Z and is denoted via Clsup* ϱ_1 (Z).

2-The supra* ρ_I -interior of Z is defined by the union of all supra* ρ_I -open sets contained in Z and denoted via Intsup* $\rho_I(Z)$

Remark 3.13:

1. Let Z represent a subset of the ideal supra topological space (\mathcal{H} ,Sup,ID) .after that Z is supra* ϱ_{I} closed if and only if Clsup* ϱ_{I} (Z)= Z,

2. Let Q represent a subset of the ideal supra topological space (\mathcal{H} ,Sup,ID). Then Q is supra* ϱ_I -open if and only if Intsup* $\varrho_I(Q)=Q$.

4-supra^{*}_{QI}-continuous function

Definition 4.1 :A function $f:(\mathcal{H}_1, \operatorname{Sup}_1, \operatorname{ID}) \rightarrow (\mathcal{H}_2, \operatorname{Sup}_2)$ is named $\operatorname{supra}^* \varrho_1$ -continuous if $f^{-1}(Z)$ is $\operatorname{supra}^* \varrho_1$ -open in \mathcal{H}_1 . for every supra open set Z of \mathcal{H}_2 .

Example 4.2: Let $H_1 = H_2 = \{ \iota_1, \iota_2, \iota_3 \}$, with two supra $S_2 = \{ H_1, \phi, \{ \iota_2 \} \}$ and

 $S_2 = \{H_2, \phi, \{\iota_1, \iota_2\}\}$, and $ID = \{\emptyset, \{\iota_3\}\}$ be an ideal on X. Define a function $f:(X, S_1, ID) \rightarrow (X, S_2)$

. $f(\iota_1) = \iota_2$, $f(\iota_2) = \iota_1$ and $f(\iota_3) = \iota_3$. It is clear that f is supra* ϱ_I -continuous

Definition 4.3: Let Z be a subset of a space (\mathcal{H} ,Sup,ID) and let $h \in \mathcal{H}$. If there exist supra* ϱ_I -open set Q containing h such that $Q \subseteq Z$. After that Z is called supra* ϱ_I -neighborhood of h.

Theorem4.4: for a function $E:(\mathcal{H}_1, \operatorname{Sup}_1, \operatorname{ID}) \longrightarrow (\mathcal{H}_2, \operatorname{Sup}_2)$, the statements that follow are equivalent

1. Ł is supra* ϱ_{I} -continuous,

2.,there exist supra* ϱ_1 -open set Q containing h such that $\mathbb{E}(Q) \subseteq \mathbb{Z}$, For every $h \in \mathcal{H}_1$ and every supra open set Z in \mathcal{H}_2 with $\mathbb{E}(h) \in \mathbb{Z}$

3. For each $h \in \mathcal{H}_1$ and each supra open set Z in \mathcal{H}_2 with $E(h) \in Z$, $E^{-1}(Z)$ is supra* ϱ_I - neighborhood of h,

4. $(Int^*_{sup}(*\varrho_I)(Z)) \subseteq Sup-Ker(E(Z))$, For every subset Z of \mathcal{H}_1 ,

5. For every subset E of \mathcal{H}_2 , $Int^*_{sup}(*\varrho_I)(L^{-1}(E)) \subseteq (Sup-Ker(E))$.

Proof:

(1) \Rightarrow (2): Assume $h \in \mathcal{H}_1$ and Lets Z be a supra open set in \mathcal{H}_2 s.t \pounds (h) \in Z. Because \pounds is supra* ϱ_I - continuous, $\pounds^{-1}(Z)$ is supra* ϱ_I -open. By butting $Q = \pounds^{-1}(Z)$ which is containing h, we have \pounds (Q) \subseteq Z.

(2)⇒(3): Let Z be a supra open set in \mathcal{H}_2 such that Ł (h) ∈ Z. Then by (2) there exists supra* ϱ_I -open set Q containing h such that Ł (Q)⊆ Z. So h ∈ Q⊆ L⁻¹(Z). Hence L⁻¹(Z) is supra* ϱ_I -neighborhood of h.

 $(3) \Rightarrow (1)$: Let Z be a supra open set in \mathcal{H}_2 such that $\mathbb{E}(h) \in \mathbb{Z}$. Then by (3), $\mathbb{E}^{-1}(\mathbb{Z})$ is supra* ϱ_{I} -neighborhood of h. Thus for each $h \in \mathbb{E}^{-1}(\mathbb{Z})$. There exists a supra* ϱ_{I} -open set Qh containing h such that $h \in Qh \subseteq \mathbb{E}^{-1}(\mathbb{Z})$. Hence $\mathbb{E}^{-1}(\mathbb{Z}) \subseteq \mathbb{Q}_{h \in \mathbb{E}^{-1}(\mathbb{Z})}$ and so $\mathbb{E}^{-1}(\mathbb{Z}) \in Sup^* \varrho_{I}O(\mathbb{X})$.

 $(1) \Longrightarrow (4)$: Let Z be any subset of \mathcal{H}_1 . Suppose that $k \notin$ Sup-Ker(Z). Then by lemma 2.5, there exists a closed subset N of \mathcal{H}_2 such that $k \in N$ and $E(Z) \cap N = \emptyset$. Thus we have

 $Z \cap L^{-1}(N) = \emptyset$ and $(Int_{sup}^{*}(*\varrho_{I})(Z)) \cap L^{-1}(N) = \emptyset$. Therefore, we obtain $L(Int_{sup}^{*}(*\varrho_{I})(Z)) \cap (N) = \emptyset$ and $k \notin N(Int_{sup}^{*}(*\varrho_{I})(Z))$. This implies that $L(Int_{sup}^{*}(*\varrho_{I})(Z)) \subseteq Sup-Ker(L(Z))$.

(4) \Rightarrow (5): Let E be any subset of \mathcal{H}_2 . By (4) and lemma 2.5,

we have $(Int_{sup}^{*}(*\varrho_{I}) (L^{-1}(E))) \subseteq Sup-Ker(L(L^{-1}(E))) \subseteq Sup-Ker(E)$

and $Int_{sup}^{*}(*\varrho_{I})(L^{-1}(E)) \subseteq L^{-1}(Sup-ker(E)).$

 $(5) \Longrightarrow (1)$: Let Z be any supra subset of \mathcal{H}_2 . By (5) and lemma 2.5, we have $\operatorname{Int}_{\sup}^*(*\varrho_I)$ $(\pounds^{-1}(Z)) \subseteq \mathbb{L}^{-1}(\operatorname{Sup-Ker}(Z)) = \mathbb{L}^{-1}(Z)$, $\operatorname{Int}_{\sup}^*(*\varrho_I)(\mathbb{L}^{-1}(Z)) = \mathbb{L}^{-1}(Z)$. This shows that $\mathbb{L}^{-1}(Z)$ is supra* ϱ_I -open.

Definition 4.5: Let \overline{D} is a subset of the ideal supra topological space (\mathcal{H} ,Sup,ID) is said to be weakly supra* ϱ_{I} -open(denoted by , if $\overline{D} \subseteq Cl_{sup}(Int^{*}_{sup}(Cl_{sup}(\overline{D}))) \cup Cl_{sup}(Int^{*}_{sup}(Cl^{*}_{sup}(\overline{D})))$.

The class of weakly supra* ρ_{I} -open set in \mathcal{H} be indicated by WSup* $\rho_{I}O(\mathcal{H},Sup,ID)$.

Proposition 4.6: For a subset of an ideal supra topological space, every supra* q_1 -open set is weakly supra* q_1 -open.

Proof: Let Z be a supra* ϱ_{l} -open set. Then $Z \subseteq Cl_{sup}(Int_{sup}^{*}(Z)) \cup Int_{sup}(Cl_{sup}^{*}(Z)) \subseteq Cl_{sup}(Int_{sup}^{*}(Cl_{sup}(Z)))$ (Z))) $UCl_{sup}(Int_{sup}(Cl_{sup}^{*}(Z)))$. This shows that Z is a weakly supra* ϱ_{l} -open set.

As the following example demonstrates, the inverse of the aforementioned theorem need not be true.

Example 4.7 : $\mathcal{H} = \{\iota_1, \iota_2, \iota_3, \iota_4\}$ with supra Sup= $\{\mathcal{H}, \emptyset, \{\iota_3\}, \{\iota_1, \iota_4\}, \{\iota_1, \iota_2, \iota_3\}\}$ and ID= $\{\emptyset, \{\iota_3\}\}$. Then the set $Z = \{\iota_1, \iota_2\}$ is weakly supra* ϱ_I -open, but it is not supra* ϱ_I -open.

Theorem 4.8 : Let $(\mathcal{H}, \operatorname{Sup}, \operatorname{ID})$ be an ideal supra topological space .If $U_{\alpha} \in \operatorname{WSup}^* \varrho_I O(\mathcal{H})$ for each $\alpha \in \Delta$, then $\bigcup \{ U_{\alpha} : \alpha \in \Delta \} \in \operatorname{WSup}^* \varrho_I O(\mathcal{H}, \operatorname{Sup}, \operatorname{ID})$.

Proof: Since $U_{\alpha} \in WSup^* \varrho_I O(\mathcal{H}, Sup, ID)$, we have

 $\bigcup_{\alpha \in \Delta} U_{\alpha} \subseteq \bigcup_{\alpha \in \Delta} Cl_{sup}(Int^*_{sup}(Cl_{sup}(U_{\alpha}))) \cup Cl_{sup}(Int_{sup}(Cl^*_{sup}(U_{\alpha}))).$

 $\subseteq \bigcup_{\alpha \in \Delta} Cl_{sup}(Int^*_{sup}(Cl_{sup}(\bigcup_{\alpha \in \Delta} U_{\alpha}))) \bigcup Cl_{sup}(Int_{sup}(Cl^*_{sup}(\bigcup_{\alpha \in \Delta} U_{\alpha}))).$

Hence $\bigcup_{\alpha \in \Delta} U_{\alpha} \in WSup^* \varrho_I O(\mathcal{H}, Sup, ID)$.

The finite intersection of weakly supra* ϱ_{I} -open sets does not necessarily have to be weakly supra* ϱ_{I} -open sets, as demonstrated by the example that follows.

Example 4.9 : $\mathcal{H} = \{\iota_1, \iota_2, \iota_3, \iota_4\}$ with supra Sup= $\{\mathcal{H}, \emptyset, \{\iota_3\}, \{\iota_3, \iota_2, \iota_4\}\}$ and ID= $\{\emptyset, \{\iota_1\}, \{\iota_4\}, \{\iota_1, \iota_4\}\}$. Then the set $Z = \{\iota_1, \iota_3\}$ and B= $\{\iota_1, \iota_2\}$ are weakly supra* ϱ_1 -open, but $Z \cap B = \{\iota_1\}$ is not weakly supra* ϱ_1 -open

Definition 4.10: A subset Z

of an ideal supra topological space (\mathcal{H} ,Sup,ID) is said to be weakly supra* ϱ_I -closed if its complement is weakly supra* ϱ_I -open.

Theorem 4.11: If a subset Z of an ideal topological space (\mathcal{H} ,Sup,ID) is said to be weakly supra* ϱ_{I} closed, then Int_{sup}(Cl_{sup}(Int^{*}_{sup}(Z))) $\subseteq Z$.

Proof: Since Z is weakly supra* ϱ_I -closed, $\mathcal{H} - Z$ is weakly supra* ϱ_I -open. This mean, $\mathcal{H} - Z \in WSup*\varrho_IO(\mathcal{H})$ by the fact $Sup^* \subseteq Sup^*_I$, and the fact $Sup^* \subseteq Sup$ then,

$$\begin{aligned} \mathcal{H} - \mathsf{Z} &\subseteq \mathrm{Cl}_{\mathrm{sup}}(\mathrm{Int}_{\mathrm{sup}}^*(\mathrm{Cl}_{\mathrm{sup}}(\mathcal{H} - \mathsf{Z}))) \cup \mathrm{Cl}_{\mathrm{sup}}(\mathrm{Int}_{\mathrm{sup}}(\mathrm{Cl}_{\mathrm{sup}}^*(\mathcal{H} - \mathsf{Z})))) \\ &\subseteq \mathrm{Cl}_{\mathrm{sup}}(\mathrm{Int}_{\mathrm{sup}}(\mathrm{Cl}_{\mathrm{sup}}(\mathcal{H} - \mathsf{Z}))) \cup \mathrm{Cl}_{\mathrm{sup}}(\mathrm{Int}_{\mathrm{sup}}(\mathrm{Cl}_{\mathrm{sup}}^*(\mathcal{H} - \mathsf{Z}))))) \\ &\subseteq \mathrm{Cl}_{\mathrm{sup}}\left[\mathrm{Int}_{\mathrm{sup}}\left(\mathrm{Cl}_{\mathrm{sup}}(\mathcal{H} - \mathsf{Z})\right) \cup \mathrm{Int}_{\mathrm{sup}}\left(\mathrm{Cl}_{\mathrm{sup}}^*(\mathcal{H} - \mathsf{Z})\right)\right] \\ &\subseteq \mathrm{Cl}_{\mathrm{sup}}[\mathrm{Int}_{\mathrm{sup}}[\mathrm{Cl}_{\mathrm{sup}}(\mathcal{H} - \mathsf{Z})) \cup \mathrm{Cl}_{\mathrm{sup}}^*(\mathcal{H} - \mathsf{Z})]] \\ &\subseteq \mathrm{Cl}_{\mathrm{sup}}[\mathrm{Int}_{\mathrm{sup}}[(\mathrm{Cl}_{\mathrm{sup}}(\mathcal{H} - \mathsf{Z})) \cup \mathrm{Cl}_{\mathrm{sup}}^*(\mathcal{H} - \mathsf{Z})]] \\ &\subseteq \mathrm{Cl}_{\mathrm{sup}}[\mathrm{Int}_{\mathrm{sup}}[(\mathrm{Cl}_{\mathrm{sup}}(\mathcal{H} - \mathsf{Z}))) \cup \mathrm{Cl}_{\mathrm{sup}}^*(\mathcal{H} - \mathsf{Z})]] \\ &= \mathcal{H} - \mathrm{Int}_{\mathrm{sup}}(\mathrm{Cl}_{\mathrm{sup}}^*(\mathcal{H} - \mathsf{Z})))] \end{aligned}$$

Therefore we get the result $Int_{sup}(Cl_{sup}(Int_{sup}^{*}(Z))) \subseteq Z$.

Definition 4.12: A function $\mathcal{F}:(\mathcal{H}_1, \operatorname{Sup}_1, \operatorname{ID}) \longrightarrow (\mathcal{H}_2, \operatorname{Sup}_2)$ is said to be weakly $\operatorname{supra}^* \varrho_{\mathrm{I}}$ -continuous(denoted by, $\operatorname{W} \operatorname{Sup}^* \varrho_{\mathrm{I}}$ -cont) if for each supra open set Z of $(\mathcal{H}_2, \operatorname{Sup}_2)$, $\mathcal{F}^{-1}(Z)$ is weakly $\operatorname{supra}^* \varrho_{\mathrm{I}}$ -open in $(\mathcal{H}_1, \operatorname{Sup}_1, \operatorname{ID})$.

Remark 4.13: Every supra* Q_I -continuous is weakly supra* Q_I -continuous. The following example show that weakly supra* Q_I -continuous function do not need to be supra* Q_I -continuous.

Example 4.14: Let $\mathcal{H} = \{\iota_1, \iota_2, \iota_3, \iota_4\}$ with a supra $Sup_1 = \{\mathcal{H}, \emptyset, \{\iota_3\}, \{\iota_3, \iota_4\}, \{\iota_1, \iota_3, \iota_4\}\}$, $Sup_2 = \{\mathcal{H}, \emptyset, \{\iota_3, \iota_2\}\}$ and $ID = \{\emptyset, \{\iota_3\}\}$. Then the identity function $f:(\mathcal{H}, Sup_1) \rightarrow (\mathcal{H}, Sup_2)$ is weakly supra* \mathcal{Q}_I -continuous but it is not supra* \mathcal{Q}_I -continuous.

Proposition 4.15: For a function $f:(\mathcal{H}_1, Sup_1, ID) \rightarrow (\mathcal{H}_2, Sup_2)$, the following statements are equivalent:

(1)f is weakly supra* ϱ_{I} -continuous,

(2)For any $h \in \mathcal{H}_1$ and $V \in Sup_2$ with $f(h) \in V$, there exist $Q \in WSup^* \varrho_1 O(\mathcal{H}, Sup, ID)$ with $h \in Q$ such that $f(Q) \subseteq V$,

(3) The inverse image of every supra closed set in \mathcal{H}_2 is weakly supra* ϱ_I -close in \mathcal{H}_1 .

Proof: Straightforward

Definition 4.16: Let E is a subset of a space (\mathcal{H} ,Sup,ID) and let $h \in \mathcal{H}$. Then E is called a weakly supra* \mathcal{Q}_{I} -neighborhood (denoted by, W Sup* \mathcal{Q}_{I} -neigh) of h if there exists a weakly supra* \mathcal{Q}_{I} -open set Q containing h such that $Q \subseteq E$.

Example 4.17 : $\mathcal{H} = \{\iota_1, \iota_2, \iota_3, \iota_4\}$ with supra Sup= $\{\mathcal{H}, \emptyset, \{\iota_3\}, \{\iota_3, \iota_2, \iota_4\}\}$ and ID= $\{\emptyset, \{\iota_1\}, \{\iota_4\}, \{\iota_1, \iota_4\}\}$. Then the set E = $\{\iota_1, \iota_3, \iota_4\}$ is weakly supra* ϱ_I -neighborhood, Since Q= $\{\iota_1, \iota_3\}$ is supra*-open set s.t Q \subseteq E.

Example 4.18 : $\mathcal{H} = \{ \iota_1, \iota_2, \iota_3, \iota_4 \}$ with supra Sup= $\{ \mathcal{H}, \emptyset, \{\iota_3\}, \{\iota_3, \iota_2, \iota_4\} \}$ and ID= $\{ \emptyset, \{\iota_1\}, \{\iota_4\}, \{\iota_1, \iota_4\} \}$.

 $E=\{\iota_1\}$ is not weakly supra* ϱ_I -neighborhood Since there is not exist supra*-open set subset of E.

Theorem 4.19: For a function f: $(\mathcal{H}_1, \operatorname{Sup}_1, \operatorname{ID}) \rightarrow (\mathcal{H}_2, \operatorname{Sup}_2)$, the following statements are equivalent :

(1)f is weakly supra* Q_{I} -continuous.

(2)For each $h \in \mathcal{H}_1$ and each supra open set V in \mathcal{H}_2 with $f(h) \in V$, $f^{-1}(V)$ is weakly supra* ϱ_I - neighborhood of h.

Proof:

 $(1) \Longrightarrow (2)$: Let $h \in \mathcal{H}_1$ and let V be a supra open set in \mathcal{H}_2 such that $f(h) \in V$. By Propostion 4.14, there exists a weakly supra* ϱ_I -open Q in \mathcal{H}_1 with $h \in Q$ such that $f(Q) \subseteq V$. So $h \in Q \subseteq f^{-1}(V)$. Hence $f^{-1}(V)$ is a weakly supra* ϱ_I -neighborhood of h.

 $(2) \Longrightarrow (1)$: Let V be a supra open in \mathcal{H}_2 and let $f(h) \in V$. Then by assumption $f^{-1}(V)$ is a weakly supra* \mathcal{Q}_I -neighborhood of h. Thus for each $h \in f^{-1}(V)$

there exists a weakly supra* ϱ_{I} -open set Qh containing h such that $h \in Q_h \subseteq f^{-1}(V)$. Hence $f^{-1}(V) = \bigcup \{Qh : h \in f^{-1}(V)\}$ and so $f^{-1}(V) \in WSup^* \varrho_I O(\mathcal{H}_1, Sup_1, ID)$.

Definition 4.20: A function $f:(\mathcal{H}_1, \operatorname{Sup}_1, \operatorname{ID}) \longrightarrow (\mathcal{H}_2, \operatorname{Sup}_2)$ is said to be weakly $\operatorname{sup}^* \varrho_I$ -irresolute(denoted by , $\operatorname{W} \operatorname{Sup}^* \varrho_I$. Irres) if $f^{-1}(V) \in \operatorname{WSup}^* \varrho_I O(\mathcal{H}_1)$ for every $V \in \operatorname{WSup}^* \varrho_I O(\mathcal{H}_2)$.

Example 4.2: Let H_1 =H2= { $\iota_1, \iota_2, \iota_3$ }, with two supra S_2 = { H_1, ϕ } and

 $S_2 = \{H_2, \varphi, \{\iota_1, \iota_2\}\}$, and $ID=\{\emptyset, \{\iota_1\}, \{\iota_4\}, \{\iota_1, \iota_4\}\}$ be an ideal on H_1 and H_2 . Define a function $f:(X,S_1,ID) \rightarrow (X, S_2,ID)$. $f(\iota_1) = \iota_2$, $f(\iota_2) = \iota_1$ and $f(\iota_3) = \iota_3$. It is clear that f is weakly supra* ϱ_I - irresolute.

Example 4.21: Let $H_1 = H_2 = \{\iota_1, \iota_2, \iota_3\}$, with two supra $S_1 = \{\mathcal{H}, \emptyset, \{\iota_3\}, \{\iota_3, \iota_2, \iota_4\}\}$ and

 $S_2 = \{ \mathcal{H}, \emptyset, \{ t_1, t_2 \} \}$, and $ID = \{ \emptyset, \{ \iota_3 \} \}$ be an ideal on on H_1 and H_2 . Define a function $f:(X, S_1, ID) \rightarrow (X, S_2, ID)$. $f(\iota_1) = \iota_1$, $f(\iota_2) = \iota_1$ and $f(\iota_3) = \iota_3$. It is clear that f is not

weakly supra**Q*_I- irresolute.

Theorem 4.22: Let $f:(\mathcal{H}_1, Sup_1, ID) \rightarrow (Y, Sup_2, ID)$ and $g:(\mathcal{H}_2, Sup_2, ID') \rightarrow (\mathcal{H}_3, ID'')$ be two function Then:

(1) $g \circ f$ is weakly supra* Q_I -continuous if f is weakly supra* Q_I -irresolute and g is weakly supra* Q_I -continuous.

(2) $g \circ f$ is weakly supra* q_I -continuous if f is weakly supra* q_I -continuous and g is continuous.

Proof:

(1) Let $h \in \mathcal{H}_1$ and W be any supra open set of Z containing $(g \circ f)(h)$. Since g is weakly supra* ϱ_I continuous, there exists $V \in WSup^* \varrho_I O(\mathcal{H}_2)$ such that $f(h) \in V$ and $g(V) \subseteq W$. Again, since f is weakly supra* ϱ_I -irresolute, there exists $Q \in WSup^* \varrho_I O(\mathcal{H}_1,h)$ such that $f(Q) \subseteq V$. This shows that $(g \circ f)(Q) \subseteq W$. Hence $g \circ f$ is weakly supra* ϱ_I -continuous.

(2)Let $h \in \mathcal{H}_1$ and W be any supra open set of Z containing $(g \circ f)(h)$. Since g is continuous, V $=g^{-1}(W)$ is open in \mathcal{H}_2 , Also, since f is weakly $supra^*\varrho_I$ -continuous, there exists $Q \in WSup^*\varrho_IO(\mathcal{H}_1,\tau)$ such that $h \in Q$ and $f(Q) \subseteq V$. Therefore $(g \circ f)(Q) \subseteq W$. Hence $g \circ f$ is weakly $supra^*\varrho_I$ -continuous.

CONCLUSION

In this paper, we have presented supra q_1 -open set with respect to an ideal (briefly supra q_1 -closed set) in supratopological spaces. We characterized variants of continuity namely supra q_1 -continuous, weakly supra q_1 -continuous, weakly s

ACKNOWLEDGEMENT

I would like to thank the editor and the referee.

Reference

- [1] K. Kuratowski, "Topology vol 1 (PWN, Warsaw Academic Press, New York)," Russian transl: Mir, Moscow, 1966.
- [2] J. R. A. Y. PORTER, A study of minimal Hausdorff spaces. New Mexico State University, 1966.
- [3] D. Janković and T. R. Hamlett, "New topologies from old via ideals," The american mathematical monthly, vol. 97, no. 4, pp. 295–310, 1990.
- [4] A. S. Mashhour, T. H. Khedr, and S. Abd El-Bakkey, "On supra-Ro and supra-R1 spaces," Indian J. Pure Appl. Math, vol. 16, pp. 1300–1306, 1985.
- [5] S. A. El-Sheikh, Dimension Theory of Bitopological Spaces. Ain Shams University, Cairo, Egypt, 1987.
- [6] S. Sekar and P. Jayakumar, "On Supra I–Open Sets and Supra I–Continuous Functions," International Journal Scientific and Engineering Research, vol. 3, no. 5, pp. 1–3, 2012.
- [7] A. Kandil, O. A. Tantawy, S. A. El-Sheikh, and S. A. Hazza, "New supra topologies from old via ideals," Journal of New Theory, no. 4, pp. 1–5, 2015.
- [8] B. A. Asaad, T. M. Al-Shami, and E.-S. A. Abo-Tabl, "Applications of some operators on supra topological spaces," Demonstratio Mathematica, vol. 53, no. 1, pp. 292–308, 2020.
- [9] S. Modak and S. Mistry, "Ideal on supra topological space," International Journal of Mathematical Analysis, vol. 6, no. 1, pp. 1–10, 2012.
- [10] T. M. Al-shami, "On some maps in supra topological ordered spaces," Journal of New Theory, no. 20, pp. 76–92, 2018.
- [11] T. H. Jasim, "On ideal supra topological space," Tikrit Journal of Pure Science, vol. 20, no. 4, pp. 152–160, 2015.
- [12]G. H. Auda and H. M. Salih, "Some results on supraPI-open sets and supraPI-continuous functions in ideal supratopological spaces," in AIP Conference Proceedings, AIP Publishing, 2023.
- [13] Y. Y. Yousif and M. A. H. Ghafel, "Fibrewise soft ideal topological space," in Journal of Physics: Conference Series, IOP Publishing, 2018, p. 012050.
- [14] N. Z. K. Raheem and S. H. Jasem, "nc-Opnc-Sets in Topological Space," MJPAS JOURNAL, vol. 2, no. 1, pp. 115–123, 2024.