

MUSTANSIRIYAH JOURNAL OF PURE AND APPLIED SCIENCES

Journal homepage: https://mjpas.uomustansiriyah.edu.iq/index.php/mjpas

RESEARCH ARTICLE - MATHEMATICS

Some results on co fuzzy metric space Alaa Jumaah Edan

Department of Mathematics, College of Education, Mustansiriyah University, Baghdad, Iraq

* alaaiedan@uomustansiriyah.edu.iq

Article Info.	Abstract
Article history:	In this research, we presented the set $G(X)$ which is the set for all fuzzy sets that are bounded
Received 24 May 2024	functions, and we provided the definition of a cofuzzy metric, and we created some features the study of the two sets open and closed balls and also features fuzzy convergence and fuzzy
Accepted 4 July 2024	closure set in the cofuzzy metric space.
Publishing 30 March 2025	
	This is an open-access article under the CC BY 4.0 license (<u>http://creativecommons.org/licenses/by/4.0/</u>) The official journal published by the College of Education at Mustansiriyah University
Keywords: fuzzy	set, t co norm, co fuzzy metric space, open sphere, closed sphere.

1. Introduction

When zadeh first introduced the concept of Fuzzy set [1] in the year 1965 several authors have proposed the same concept as fuzzy metric spaces via various ways [2] Gorge and Vermani proposed that a fuzzy metric is induced by every metric [3]. They modified the concept of fuzzy metric space with the aid of t-norm and t-conorm in 1994. Many authors such as [4] [5] [6] [7] Provided properties representing the topological open set [8] The purpose is to clarify some properties of co fuzzy metric space throught the set G(X) and we created some features like the study of the two sets: open and closed balls and also features of co fuzzy convergence.

2. Preliminaries

Definition 2.1. [9]

The binary operation ((*): $[0,1] \times [0,1] \rightarrow [0,1]$ is a continuous t-norm if it the following requirements are satisfied:

(1) $g \circledast 1 = g$

- (2) $g \circledast h = h \otimes g$ (3) $g_1 \circledast h_1 \le g_2 \circledast h_2$ for $g_1 \le g_2$, $h_1 \le h_2$
- (4) $(g \circledast h) \circledast k = g \circledast (h \circledast k)$

Definition 2.2. [10]

The binary operation (\otimes): $[0,1] \times [0,1] \rightarrow [0,1]$ is a continuous t-conorm if it the following requirements are satisfied:

(1) $g \otimes 0 = g$

- (2) $g \otimes h = h \otimes g$ (3) $g_1 \otimes h_1 \ge g_2 \otimes h_2$ for $g_1 \ge g_2$, $h_1 \ge h_2$
- (4) $(g \otimes h) \otimes k = g \otimes (h \otimes k)$.

Example 2.1.

Consider (\otimes): $[0,1] \times [0,1] \rightarrow [0,1]$ defined by $g \otimes h = \max \{g \}$ is t conorm.

Proof:

Let g, h, i, $j \in [0, 1]$

- (1) $g \otimes 0 = \max(g, 0) = g$
- (2) $g \otimes h = max (g, h) = max (h, g) = h \otimes g$
- $(3) g \ge i \ , \ h \ge j \Rightarrow max (g, h) \ge max (i, j) \Rightarrow \ g \otimes h \ge i \otimes j \ monutone$
- (4) $(g \otimes h) \otimes i = \max(g, h) \otimes i = \max((g \mid h) i) = \max(g(h \mid i)) = g \otimes \max(h \mid i) = g \otimes (h \otimes i)$ assositive

Definition 2.3.[11]

The triple (X, N, \otimes) is called a co fuzzy metric space denoted by (Co- F M S) when X represents an arbitrary set, \otimes is a continuous t-conorm and N is a fuzzy set of X × X × [0, ∞) if it the following requirements are satisfied:

(1) N(g, h, 0) = 1

(2) N(g, h, t) = 0, $\forall t > 0, \Leftrightarrow g = h$

 $(3 N(g, h, t) = N(h, g, t), \forall t > 0$

(4) $N(g, k, t + s) \leq N(g, h, t) \bigotimes N(h, k, s)$

(5) N(g, h, .): $X \times X \times [0,\infty) \rightarrow [0,1]$ is left continuous where g, $h \in X$ and t, s > 0

given an (Co- F M S) N(g, h, t) we determined the open sphere $S_N(g, r, t)$ for $g \in X, r \in (0, 1)$

And t > 0 as the set $S_N(g, r, t) = \{h \in X : N (g, h, t) < r\}$

Obviously, g ∈ $S_N(g,r,t)$, ∀ g ∈ X, 0 < r_1 < r_2 < 1, and 0 < $t_1 \le t_2$ with us $S_N(g,r_1,t_1) \subseteq S_N(g,r_2,t_2)$

Example 2.2.

Let $N(g, h, t) = \left(\frac{|g-h|}{t+|g-h|}\right) \forall g, h \in X, t \in (0, \infty)$ and \otimes is a continuous t-conorm then (X, N, \otimes) is (Co- F M S).

Proof:

(1)
$$N(g, h, 0) = \left(\frac{|g-h|}{t+|g-h|}\right) = \left(\frac{|g-h|}{|g-h|}\right) = 1, \ \forall t > 0$$

$$\begin{array}{l} (2) \ \forall \ t > 0 \ \text{Assume that } g = \ h \ \text{then this implies that } | \ g - \ h | = 0 \\ N(g,h,t) \ = \ \left(\frac{|g-h|}{t+|g-h|}\right) \left(\frac{0}{t+0}\right) = 0 \\ (3) \ N(g,h,t) \ = \ \left(\frac{|g-h|}{t+|g-h|}\right) = \ \left(\frac{[-(h-g)]}{t+[-(h-g)]}\right) = \ \left(\frac{|h-g|}{t+|h-g|}\right) = N(h,g,t). \\ (4) \ N(g,k,t \ + \ s) \ = \ \left(\frac{|g-h+h-k|}{(t+s)+|g-h+h-k|}\right) = \ \left(\frac{|g-h|}{t+|g-h|}\right) + \ \left(\frac{|h-k|}{s+|h-k|}\right). \\ \Rightarrow \ N(g,k,t \ + \ s) \ \le \ \left(\frac{|g-h|}{t+|g-h|}\right) + \ \left(\frac{|h-k|}{s+|h-k|}\right). \\ Then \ N(g,k,t \ + \ s) \ \le \ N(g,h,t) \ \otimes \ N(h,k,s). \end{array}$$

(5) Take a sequence {t_n} ∈ (0,∞), ∋ sequence {t_n} converge to t ∈ (0,∞) where (0,∞) equipped with the usual metric that is | t_n - t | = 0
Then every N(g, h, .): (0,∞) → [0, 1] is left continuous.

Definitions 2.4.

Suppose (X, N, \bigotimes) represent a (Co- F M S).

- (1) $\lim_{n\to\infty} N(x_n, x, t) = 0$ then the sequence denote by (seq) in X is considered to be a convergent to a point . $g \in X$
- (2) $\forall t > 0$ further the seq $\{x_n\}$ in X is called a Cauchy seq in X if

$$\lim_{n \to \infty} N(x_n, x_{n+p}, t) = 0, \ \forall t > 0 \ and \ p > 0$$

When each Cauchy seq of X converges to a point in X, then the space is considered to be complete.

Definition 2.5.

In (CO-FMS) the function N is continuous if whenever,

 $\{x_n\} \rightarrow x, \{y_n\} \rightarrow y \text{ then } \lim_{n \rightarrow \infty} N\left((x_n), (y_n), t\right) =, N(x, y, t) \forall t > 0$

Definition 2.6.

A mapping g from a (Co- F M S) (X, N, \otimes) to it self is continuous at x for all seq in X if $\lim_{n\to\infty} N((x_n), (x), t) = 0$, t > 0, *implies* $\lim_{n\to\infty} N(g(x_n), g(x), t) = 0$

3. Main Results

Let G(X) be a collection of all fuzzy sets in X, where X be a non-empty set, and If $g \in G(X)$ then $g = \{(x, \alpha) : x \in X \text{ and } \alpha \in (0, 1]\}$

Obviously, f is a bounded function for $|g(x)| \le 1$ If K is the space of real numbers, therefore G(X) represents a space of vectors of a field K. The definitions of addition and scalar multiplication are as follows:

 $g + h = \{(x, \alpha): + (y, \beta)\} = \{x + y, \alpha \land \beta : (x, \alpha) \in g, (y, \beta) \in h. And k g = \{k (x, \alpha): (x, \alpha) \in g \text{ where } k \in K\}$

a space of vectors G(X) is defined as a metric space if all $g \in G(X)$, a function d: $G(X) \times G(X) \rightarrow R$ is referred to as a metric function (distance function) on G(X) if it the following requirements are satisfied:

 $(1) d (g, h) \ge 0 \forall g, h \in G(X)$

(2) d (g, h) = 0 iff $f = h \forall f, h \in F(x)$

(3) d (g, h) = d (h, f), \forall f, h \in F(x)

(4) d (g, h) \leq d (g, k) + d (k, h), \forall g, h, k \in G(X), Then (G(X),d) is a metric space.

Dfinition 3.7.

Consider a linear space G(X) on the real field K. A (Co- F) sub set N of $G(X) \times G(X) \rightarrow R$ is referred to as a (Co- F M) function on X (or co- F M) function on G(X) iff

(1) N(g, h, t) = 0, $\forall t \in R \text{ with } t > 0$

(2) N(g, h, 0) = 1 iff g and h linearly dependent, $\forall t \in R$ with t > 0

(3) N(g, h, t) = N(h, g, t),

 $(4) N(g, h, t + s) \leq N(g, k, t) \bigotimes N(k, h, s) \ \forall t, s \in R$

(5) N(g, h, .) $(0, \infty) \rightarrow [0, l]$ is left continuous

Then (G(X), N) is a (Co- F M S). $\forall g, h, k \in G(X)$

Dfinition 3.8.

Let $(G(X), N, \bigotimes)$ be a (Co- F M S)., and the open sphere is defined as S(g, r, t) with center $g \in G(X)$ and radius r, 0 < r < l, t > 0, as $S(g, r, t) = \{g \in G(X) : N(g, h, t) < r \}$

Remark 3.1.

Let $(G(X), N, \bigotimes)$ be a (Co-F M S)., and let g, $h \in G(X)$, t > 0, 0 < r < l, Then if N(g, h, t) < rwe can find t_0 with $0 < t_0 < t \ni N(g, h, t_0) < r$

Theorem 3.1.

Let the open sphere $S(g, r_1, t)$ and $S(g, r_2, t)$ With a single center $g \in G(X)$ and with radius $0 < r_1 < 1$ and $0 < r_2 < 1$ correspondingly. Then we any have $S(g, r_1, t \subset S(g, r_2, t))$, or $S(g, r_2, t) \subset S(g, r_1, t)$

Proof:

Let $g \in G(X)$, t > 0 and consider $S(g, r_1, t)$ and $S(g, r_2, t)$ with $0 < r_1 < 1$ and $0 < r_2 < 1$ are open sphere, *if* $r_1 = r_2$, then the hypothesis holds. Next, we suppose that $r_1 \neq r_2$. We may suppose without waste of energy. *If* $0 < r_1 < r_2 < 1$, *Suppose* $r_1 < r_2$ *Assuming an is in* $S(g, r_1, t)$, it follows that $N(a, h, t) < r_1 < r_2$. Assuming a belongs to $S(g, r_2, t)$, Attempts to demonstrate that $S(g, r_1, t)$ is less than $S(g, r_2, t)$. Assuming $0 < r_2 < r_1 < 1$, we may show that $S(g, r_2, t) \subseteq S(g, r_1, t)$.

Definition3.9.

Let A be a subset of the (Co- F M S). and let the collection (G(X), N, \bigotimes) considered open such that 0 < r < 1 if given any point $a \in A$ and t > 0 then $S(a, r, t) \subseteq A$.

Theorem 3.2.

In a (Co- F M S). (G(X), N, \otimes), each open sphere represents an open set.

Proof:

Suppose an open sphere S(g, r, t), Now $y \in S(x, r, t)$ infers that N(g, h, t) < r Since N(g, h, t) < r by remark(3.1) it is possible to find a point t_0 , $0 < t_0 < t \ni N(g, h, t) < r$

Let $r_0 = N(g, h, t) < r$ since $r_0 < r$, to find s where, $0 < s < 1 \ni r_0 < s < r$,

Using a given r_0 and s in which $r_0 < s$ we can now find an s, $0 < s < 1 \ni N(g, h, t_0) < r$

Let $r_0 = N(g, h, t_0)$ since $r_0 < r$, it is possible to find an s, 0 < s < 1, $\exists r_0 < s < r$

Now considering r_0 and s s.t $r_0 < s$, we can identify

 $r_1, 0 < r_1 < 1$, such that $r_0 \otimes r_1 < s$ Now let the ball $S(g, r_1, t - t_0)$, we say $S(h, r_1, t - t_0) \subset S(g, r, t)$. Currently $k \in S(h, r_1, t_0)$ involves that $N(h, u, t - t_0) < r_1$

Therefore $N(g, u, t) < N(g, u, t_0) \otimes N(h, u, t - t_0)$ $< r_0 \otimes r_1$ < s< r.

Hence $u \in S(g, r, t)$, and therefore $S(h, r_1, t - t_0) \subset S(g, r, t)$.

Definition 3.10.

The (Co- F M S). (G(X), N, \bigotimes),we explain a closed sphere with the center $g \in G(X)$ and the radius 0 < r < 1, t > 0, as S[g, r, t] = { $g \in G(X) : N(g, h, t) \le r$ }

Lemma 3.1.

In a (Co- F M S). (G(X), N, \bigotimes), each closed sphere is a closed set.

Proof:

Since X is first countable, Let $h \in S[g, r, t]$. There is a seq $\{h_n\}$ in $\overline{S[g, r, t]}$ s.t the seq $\{h_n\}$ convergence to h therefore $N(h_n, h, t)$ converges to 0 for all t, for a given $\epsilon > 0$

 $N(g,h,t + \varepsilon) < N(g,h_n,t) \otimes N(h_n,h,\varepsilon)$

Hence

 $N(g, h, t + \varepsilon) < \lim_{n \to \infty} N(g, h_n, t) \otimes N(h_n, h, \varepsilon)$

 $\leq r \otimes 0$ = r If $N(g, h_n, t)$ is bounded, the seq $\{h_n\}$ contains a subseq denoted by $\{h_n\}$ for which $\lim_{n\to\infty} N(g, h_n, t)$ is existent, particularly for $n \in \mathbb{N}$

Take
$$\varepsilon = \frac{1}{n}$$
, then $N(g, h, t + \varepsilon) = \lim_{n \to \infty} N(g, h, t + \frac{1}{n}) \leq r$

Thus $g \in S[g, r, t]$ closed set

Definitions 3.11.

If the a (Co- F M S). $(G(X), N, \bigotimes)$, then

(a) The seq $\{g_n\}$ in G(X) is called (Co-F) convergent to x in G(X) if all $\epsilon \in (0,1)$ and all t > 0

 $\exists n_0 \in Z^+ \ni N(g_n, g_m, t) < \varepsilon \ \forall \ n \ge n_0$

(b) The seq $\{g_n\}$ in X is called (Co- F) Cauchy seq if for every x in G(X) if $\forall \epsilon \in (0,1)$ and each t > 0 $\exists n_0 \in Z^+ \ni N(g_n, g_m, t) < \epsilon \forall n, m \ge n_0$

(c) A (Co- F M S) s.t every (Co- F) Cauchy seq is (Co- F) convergent is referred to as complete

Theorem 3.3.

(i) Each fuzzy convergent seq is (Co- F) Cauchy seq in (Co- F M S). (G(X), N, \bigotimes)

(ii) In G(X), each seq has an unique limit.

Proof:

(i) Suppose that $\{g_n\}$ is the seq in $G(X) \ni , \forall t > s > 0$

```
\lim_{n\to\infty} N(g_n, g, t) = 0
```

 $N(g_n, g, t) \le N(g_n, g, t - s) \otimes N(g_m, g, s)$ Taking limit as m, $n \to \infty$

 $\lim_{n\to\infty} N(g_n, g_m, t) \le \lim_{n\to\infty} N(g_n, g, t-s) \otimes \lim_{n\to\infty} N(g_m, g, s) = 0 \otimes 0 = 0$

But $\lim_{n,m\to\infty} N(g_n, g_m, t) \le 0$ then $\lim_{n,m\to\infty} N(g_n, g_m, t) = 0$, $\Rightarrow \{g_n\}$ is (Co-F) Cauchy seq in X.

(ii) Let $\{g_n\}$ is the seq in $G(X) \ni g_n \rightarrow g$ and $g_n \rightarrow h$ and $g \neq h$ then $\forall t > s > 0 > \lim_{n \to \infty} N(g_n, g, t) = 0$

Then $\lim_{n\to\infty} N(g_n, h, s) = 0$, $\lim_{n\to\infty} N(g_n, h, t-s) = 0$

 $N(g, h, t) \leq N(g_n, g, s) \otimes N(g_n, h, t - s)$

Taking limit

 $N(q, h, t) \leq \lim_{n \to \infty} N(g_n, g, s) \otimes \lim_{n \to \infty} N(g_n, g, t - s) = 0$

 $N(g, h, t) \le 0 \otimes 0 = 0$ but $N(g, h, t) \le 0 \Rightarrow N(g, h, t) = 0$

Then by axiom (2) g = h

Definition 3.12.

If $(G(X), N, \bigotimes)$ is a (Co- F M S)., then the (Co- F) closure of A is defined as a subset \overline{A} of G(X)

 $A \subset G(X)$ if for any $g \in \overline{A}$, $a \in G(X)$ there exists a seq $\{g_n\}$ in $A \ni \lim_{n\to\infty} N(g_n, g, t) = 0, \forall t > 0$

Theorem 3.4.

Let A be a (Co- F) subspace of complete (Co- F M S). G(X) then A is complete (Co- F) space iff it is (Co- F) closed in G(X)

Proof

Let A be a complete (Co- F M S). and let $g \in \overline{A}$ there exist a seq $\{g_n\}$ in $A \ni g_n \to g$ then $\{g_n\}$ Is a (Co- F) Cushy seq in A, since A is a complete (Co- F) space.

 \implies there is $h \in \overline{A} \ni g_n \longrightarrow h$, but the (Co- F) converge is unique

 $h \implies g \implies g \in A \implies \overline{A} \subseteq A$

Then A is closed (Co- F) subspace.

Conversely, let us assume that A is a closed (Co- F) subspace within G(X)

Let $\{g_n\}$ be a (Co- F) Cauchy seq in A

Since $A \subset G(X) \implies \{g_n\}$ is a (Co-F) Cauchy seq in G(X)

Because G(X) is a complete fuzzy space, there is $g \in G(X) \ni g_n \rightarrow g$ since $g_n \in A \implies g \in \overline{A}$

Since A is closed (Co- F) set in G(X),

 $\bar{A} = A \implies g \in A \implies \{g_n\}$ is (Co- F) converge seq in A then A is complete (Co- F) subspace

References

- [1] L. A. Zadeh, "Fuzzy sets," Inf. Control, vol. 8, no. 3, pp. 338–353, 1965.
- [2] V. Gregori and S. Romaguera, "Fuzzy quasi-metric spaces," 2004.
- [3] V. Gregori, J. J. Miñana, and D. Miravet, "A duality relationship between fuzzy partial metrics and fuzzy quasi-metrics," *Mathematics*, vol. 8, no. 9, Sep. 2020, doi: 10.3390/math8091575.
- [4] B. P. Varol, "On intuitionistic fuzzy cone symmetric spaces," in *AIP Conference Proceedings*, American Institute of Physics Inc., Dec. 2019. doi: 10.1063/1.5136118.
- [5] S. Romaguera, A. Sapena, and P. Tirado, "The Banach fixed point theorem in fuzzy quasi-metric

spaces with application to the domain of words," *Topol. Appl.*, vol. 154, no. 10 SPECIAL ISSUE, pp. 2196–2203, May 2007, doi: 10.1016/j.topol.2006.09.018.

- [6] G. Rano and T. Bag, "A Fixed Point Theorem in Dislocated Fuzzy Quasi-Metric Spaces," 2013.
- [7] M. A. Khalik AL-Khafaji and G. H. Abdulhusein, "Some results on fuzzy ω-covering dimension function in fuzzy topological space," *Iraqi J. Sci.*, vol. 62, no. 3, pp. 961–971, 2021, doi: 10.24996/ijs.2021.62.3.26.
- [8] N. Z. K. Raheem and S. H. Jasem, "nc-Opnc- Sets in Topological Space", Mustansiriyah Journal of Pure and Applied Sciences., vol. 2, no. 1, pp. 115–123, 2024.
- [9] A. Mohamad, "Some properties of fuzzy quasimetric spaces," *Int. J. Math. Math. Sci.*, vol. 2010, 2010, doi: 10.1155/2010/514747.
- [10] B. Deshpande and R. Pathak, "italian journal of pure and applied mathematics-n. 31–2013 (343–354) 343 FIXED POINT THEOREMS ON INTUITIONISTIC FUZZY QUASI-METRIC SPACES WITH APPLICATION TO THE DOMAIN OF WORDS."
- [11] P. Tirado Peláez and C. D. Matemáticas Dirigida por el Doctor Salvador Romaguera Bonilla Valencia, "Contractive Maps and Complexity Analysis in Fuzzy Quasi-Metric Spaces Memoria presentada por," 2008.