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Due to its flexibility, the skew distributions (univariate and multivariate) have received 

widespread attention over the last two decades because they're become widely used in the 

modelling and analysis of skewed data sets. The main goal of this paper is to introduce asymptotic 

expressions for entropy of multivariate skew Laplace normal distribution to deal with the issue by 

providing a flexible model for modeling skewness and heavy tiredness simultaneously. Thus, we 

extend this study to the class of mixture model of these distributions. In addition, upper and lower 

bounds of Rényi entropy of mixture model are found, by using generalized HӦlder’s inequality 

and some properties of multinomial theorem.. Finally, we give a real data examples to illustrate 

the behavior of information. A simulation study and a real data example, are also provided to 

illustrate the information behavior of MSLN  and MMSLN distributions for modeling data sets in 

multivariate settings.  
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1. Introduction 

The mixture models are an important statistical tool for many applications such as data mining, density estimation, pattern 

recognition, medicine, satellite imaging and image processing etc. (More detail  [1], [2], [3], [4]).  

In 1996 Azzalini[5] proposed the skew normal distribution as an alternative to normal distribution. After a short period of time, 

Genton and Loperfido (2005) [6] introduced the generalization of multivariate skew normal distribution as follows 

 

ƒ𝑑(y; 𝜉, S) = 2φ(y; 𝜉, S). Ҝ(y − 𝜉 )  ,       y ∈ R
d  

(1) 

Where, φ(y; 𝜉, S) is a probability density function of multivariate normal distribution and  0 ≤ Ҝ(y) ≤ 1 such that  Ҝ(−y) =

1 − Ҝ(y) , for any  y ∈ Rd. Clearly, if we take Ҝ(y) =
1

2
 Then Y has a normal distribution in the multivariate case. Where, if Ҝ 

is a distribution function such as  Ҝ(y) = G(𝜂′y) Then this gives the generalized skew normal distribution.  The structure of this 

paper was designed according to the following fundamental aims: 

1) We determine and investigate the exact expression for Shannon and Rѐnyi entropies of the skew Laplace normal distributions 

in multivariate analysis. 

2) We drive and identify the best approximate expression for Shannon entropy of mixture model of distributions.  
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3) An asymptotic expression for Rényi entropy is given by the approximation and by using some inequalities and properties of 

Lp-spaces 

4) We find the bounds of entropy for mixture model of distributions by using generalized HӦlder’s inequality and some 

properties of multinomial theorem. 

5) We give and discuss examples with real data to illustrate the behavior of entropy of the mixture models.  

 

2. Preliminary Material  

Let  y be a continuous random vector that takes values of Rd and 𝒫(y; ξ)be the density function of  𝑦. A 

continuous  Rényi entropy of y is defined as  

H𝛕(y; ξ) = {

1

1 − 𝛕
ln(E(𝒫(y; ξ) )𝛕−1)  , 𝛕 ≠ 1 , 0 < 𝛕,

−E (ln(𝒫(y; ξ)))        ,           𝛕 = 1                 
 

 

(2) 

When τ = 1, we have  the Shannon entropy  

H1(y; ξ) = −E(ln(𝒫(y; ξ)))  

(3) 

The relationship between the entropies in equations (1) and (2) is given by H1(y; ξ) = lim
𝛕→1

H𝛕(y; ξ). 

Translation does not change of the entropy  H𝛕(y + k; ξ) = H𝛕(y; ξ) + k  where, k is constant. 

Proposition 1.  Suppose that 0 < 𝛕1 < 𝛕2 < ∞, then H𝛕1(y; ξ) ≥ H𝛕2(y; ξ). If y has uniformly distribution 

then H𝛕1(y; ξ) = H𝛕2(y; ξ). 

Proof: firstly, suppose that  𝛕 ≠ 1, then  

∂

∂𝛕
H𝛕(y; ξ) =

E ((𝒫(y; ξ))
𝛕−1
ln(𝒫(y; ξ)))

(1 − 𝛕)E(𝒫(y; ξ))
𝛕−1 +

ln (E(𝒫(y; ξ))
𝛕−1
)

(1 − 𝛕)2
 

The second part in right side of the above equation is  

ln (E(𝒫(y; ξ))
𝛕−1
)

(1 − 𝛕)2
=
E((𝒫(y; ξ))

𝛕−1
 ln (E(𝒫(y; ξ))

𝛕−1
))

(1 − 𝛕)2E(𝒫(y; ξ))
𝛕−1  

Therefore,   

∂

∂𝛕
H𝛕(y; ξ) =

1

(1 − 𝛕)2
{
E((𝒫(y; ξ))

𝛕−1 
ln(𝒫(y; ξ))

𝛕−1
)

E(𝒫(y; ξ))
𝛕−1 +

E((𝒫(y; ξ))
𝛕−1
 ln (E(𝒫(y; ξ))

𝛕−1
))

E(𝒫(y; ξ))
𝛕−1 } 

=
−1

(1 − 𝛕)2

{
  
 

  
 
E((𝒫(y; ξ))

𝛕−1 
ln (

(𝒫(y; ξ))
𝛕−1

E(𝒫(y; ξ))
𝛕−1))

E(𝒫(y; ξ))
𝛕−1

}
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Now, to define g(y; ξ) =
(𝒫(y;ξ))

𝛕

E(𝒫(y;ξ))
𝛕−1 As a new probability function,  then  

∂

∂𝛕
H𝛕(y; ξ) =

−1

(1 − 𝛕)2
{Eg (ln (

g(y; ξ)

𝒫(y; ξ)
))} 

But Eg (ln (
g(y;ξ)

𝒫(y;ξ)
)) not  negative value therefor,  either  Eg (ln (

g(y;ξ)

𝒫(y;ξ)
)) > 0, then H𝛕(y; ξ) is decreasing 

with respect to 𝛕 or Eg (ln (
g(y;ξ)

𝒫(y;ξ)
)) = 0 this implies that  f = g almost everywhere, but  𝛕 ≠ 1 then  𝒫 only  

has uniform distribution. Conversely, assume that y has uniform distribution then,   𝒫(y; ξ) =

{
1

Vol(A)
  , x ∈ A

0           , x ∉ A 
  , for some measurable set A ⊆ Rn. consequently,   H𝛕(y; ξ) =

1

1−𝛕
ln(Vol(A)𝛕−1) = 

ln(Vol(A)) Does not depend on 𝛕. 

 

Proposition 2.   Rѐnyi entropy does not depend on the location parameter for location scale model does not 

depend on location parameter.   

Proof: The location scale model 𝒫(y; ξ) Can be written as  

𝒫𝑦(y; 𝜉, Ω) = (det(Ω))
−
1
2 𝒫y0 (Ω

−
1
2(y − 𝜉), 0, I) 

Where, y0 = Ω
−
1

2(y − 𝜉). The Rѐnyi entropy is  

H𝛕(y; 𝜉, Ω) = ln(det(Ω))
1
2 +

1

1 − 𝛕
ln (E (𝒫y0(y0, 0, I)))

𝛕−1

 

= ln(det(Ω))
1
2 + H𝛕(y; 0,1) 

Proposition 3. [7]  Let y0~MNd(𝜉, Ω).  Then, the Rényi entropy of y0 is given as 

H𝛕(y; 𝜉, Ω) =

{
 

 
1

2
ln(det(2π exp(1)Ω))               ,   𝛕 = 1                  

1

2
ln(det(2πΩ)) −

d

2(1 − 𝛕)
ln(𝛕) ,0 < 𝛕 < ∞, 𝛕 ≠ 1

 

 

 

 

(4) 

 

Lemma 1. [8]  Let  y be a continuous random vector that takes values of Rd and 𝒫(y; 0,ℳ) be the density 

function of  𝑦. Then, the following inequality is accomplished  

H1(y; 0,ℳ) ≤
1

2
ln(det(2πexp (1)ℳ)) 

 

 

(5) 

3. Entropy of proposed Distributions  

This section includes the complete derivation of simple expressions for entropy of multivariate skew 

Laplace normal distribution.  Some properties of transformations and integrations are used. Also, we give 
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an illustrative example explains the relationship between the parameter 𝛕th order of entropy and skewness 

parameter 𝜂 with the values of Rѐnyi entropy.  

Azzalini and Capitaino [9] introduced multivariate skew Laplace distribution(y~MSLd(𝜉, Ω, 𝜂))  as 

follows  

𝒫d(y; 𝜉, Ω, 𝜂)

=
det(Ω)−

1
2

2dβ(π)
1
2
(d−1)Г (

d + 1
2 )

exp {
−√(1 + 𝜂′Ω−1𝜂)(y − 𝜉)′Ω−1(y − 𝜉)

+(y − 𝜉)′Ω−1𝜂                 
} 

 

 

 (6) 

Where, 𝜉 ∈ Rd, Ω ∈ Rd×d and skewness vector 𝜂 ∈ Rd. 

The generalized skew Laplace distribution (y~SGL(𝜉, Ω, 𝜂1, 𝜂2)) is  

k(y; 𝜉, Ω, 𝜂1, 𝜂2) = 2g(y; 𝜉, Ω). G(
𝜂1𝑦

(1 + 𝜂2 𝑦2)
1
2

 ) 

 

 

(7) 

where, g is univariate Laplace  distribution,  G  is cumulative distribution function of univariate standard 

normal and 𝜂1 ∈ R, 𝜂2 ≥ 0. A random vector y ∈ Rd has multivariate skew Laplace normal distribution 

(y~MSLNd(𝜉, Ω, 𝜂)) if it has probability density function as follows 

𝜓𝑑(y; 𝜉, Ω, 𝜂) = 2𝒫ML(y; 𝜉, Ω)Φ(𝜂
′Ω̃−1(y − 𝜉))  

 

(8) 

 

where, 𝜉, 𝜂 ∈ Rd, Ω ∈ Rd×d (positive definite),  Ω̃ = diag(s11, s22, … , sdd)
1

2 , Ω =(sij) , i ,j =1,2,…,d 

and 𝒫ML(y; 𝜉, Ω) is a multivariate Laplace distribution. 

𝒫ML(y; 𝜉, Ω) =
det(Ω)−

1
2

2d(π)
1
2
(d−1)Г (

d + 1
2 )

exp {−√(y − 𝜉)′Ω−1(y − 𝜉)} 

 

 

(9) 

 

The stochastic representation of𝑦~MSLNd(𝜉, Ω, 𝜂)  can be introduced as  mixture of  multivariate normal 

distribution U1~MNd(𝜉, Ω) and univariate standard normal distribution U2~N(0,1)  

 

𝑦 = 𝜉 + (Ω)
1
2 [

𝜂|U2|

√𝜐(𝜐 + 𝜂′𝜂)
+ (𝜐𝐼𝑑 + 𝜂𝜂

′)
1
2U1] 

 

 

(10) 

 

Where, 𝜐 has the inverse gamma distribution with the probability density function 

𝑔(𝜐) =
1

2
d+1
2 Г (

d + 1
2 )

 𝜐
−(
d+1
2
+1)
𝑒−

1
𝜐 

 

 

(11) 
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and suppose that U1, U2 and 𝜐 are mutually independent. For the details about this see [10].  

The joint density function and conditional distribution are given as follows ([11]) 

𝒫(x, z) =
det(Ω)

−
1
2exp{(x−𝜉)′Ω−1(x−𝜉)}

2d√(1+𝜂′Ω−1𝜂)(π)
1
2
(d−1)

Г(
d+1

2
)
z−

3

2   

. exp {−
1

2
((x − 𝜉)′Ω−1(x − 𝜉)z + (1 + 𝜂′Ω−1𝜂)z−1)} 

 

 

 

 

(12) 

𝒫(z|x)

=
√(1 + 𝜂′Ω−1𝜂)

√2π
exp{

−√(1 + 𝜂′Ω−1𝜂)z−
3
2 √(x − 𝜉)′Ω−1(x − 𝜉)             

−
1

2
((x − 𝜉)′Ω−1(x − 𝜉)z + (1 + 𝜂′Ω−1𝜂)z−1)

} 

 

 (13) 

Clearly, when 𝜂 = 0 then the multivariate skew Laplace distribution can be reduced to the symmetric 

multivariate Laplace distribution. The mean vector and covariance matrix of 𝑦are derived by [10] in the 

following forms: 

E(y) = 𝜉 + √
2

𝜋
(Ω)

1
2𝜂 ϒ 

 

 

(14) 

Var(y) = (𝑑 + 1)Ω −
2

𝜋
(Ω)

1
2  𝜂𝜂′(Ω)

1
2 θ2 

 

(15) 

where,  ϒ = E(
(𝜐)

−
1
2

√𝜐+𝜂′𝜂
) , , which can be computed by using numerical methods such as importance 

sampling methods.  

The characteristic function of y~MSLNd(𝜉, Ω, 𝜂) is given by  

ΨX(r) = exp(
𝑖r′𝜉

2
)𝐸𝜐 (exp(

−𝜐−1r′Ωr

2
) (1 + 𝑖𝜏κ′𝜔𝑟)) 

 

 

(16) 

where, κ =
𝜐
−
3
2Ω̃𝜂 

(1+𝜐−2𝜂′Ω̃𝜂 )
1
2

 ,  Ω̃ = ωΩω and ω = diag(s11, s22, … , sdd)
1

2 , Ω =(sij) , 𝑖 , 𝑗 = 1,2, … , 𝑑 and 

the function τ (·) is defined as follows  

𝜏(𝑦) = ∫ √
2

𝜋

𝑦

0

 𝑒𝑥𝑝 (
𝑢2

2
)𝑑𝑢   , 𝑦 > 0 , 𝜏(−𝑦) = −𝜏(𝑦) 

 

 

We note that the expectation given in the equation (16) can be calculated by numerical methods. 

Proposition 4. Let X0~MLd(𝜉, Ω).  Then  
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H1(x0; 𝜉, Ω) = −2ln(
det(Ω)−

1
2

2d(1 + 𝜂′Ω−1𝜂)(π)
1
2
(d−1) Г (

d + 1
2 )

 ) − 2d 

 

 

(17) 

                      

H𝛕(x0; 𝜉, Ω) = ln [
𝛕− 

d
1−𝛕 det(4πΩ)

1
2Г (

d + 1
2 )

√π
] , 0 < 𝛕 < ∞, 𝛕 ≠ 1 

 

 

(18) 

 

Proof:  By taking the natural logarithm and expectation for both sides of equation (9), we get on equation 

(17). Also, from equation (9), we get 

∫ (𝒫ML(y; 𝜉, Ω))
𝛕
dx

⬚

Rd
=

det(Ω)−
1
2
 𝛕

2𝛕(d−1)(π)
1
2
𝛕(d−1) (Г (

d + 1
2

))

𝛕∫ exp {−𝛕√(x − 𝜉)′Ω−1(x − 𝜉)}
⬚

dx
⬚

Rd
 

Taking natural logarithm and multiplying by 1 − 𝛕  for both sides of above equation, we have the result 

in equation (18) 

Lemma 2.  Let  X~MSLNd(𝜉, Ω, 𝜂)  distributed in the equation (8). Then  

i. E [𝑙𝑛 (Φ (𝜂′Ω̃−1(x − 𝜉)))] = √
2

𝜋
𝜂′Ω−

1

2𝜂ϒ 
 

 

(19) 

ii. E [(ln(𝒫ML(x; 𝜉, Ω)))] =

ln (
det(Ω)

−
1
2

2d√(1+𝜂′Ω−1𝜂)(π)
1
2
(d−1)

 Г(
d+1

2
)
 ) + (d + 1)𝜂′Ω−1𝜂 + d 

 

 

(20) 

Proof:  Directly,  

E [𝑙𝑛 (Φ (𝜂′Ω̃−1(x − 𝜉)))] = E[(x − 𝜉)′Ω−1𝜂] 

= E (Tr(𝜂′Ω−1(x − 𝜉))) 

= Tr(𝜂′Ω−1E(x − 𝜉)) 

= Tr(√
2

𝜋
𝜂′Ω−

1
2𝜂ϒ) 

= √
2

𝜋
𝜂′Ω−

1
2𝜂ϒ 

Now, to prove part ii.,  

E [(ln(𝒫ML(x; 𝜉, Ω)))] = 𝑙𝑛(
det(Ω)−

1
2

2d(π)
1
2
(d−1)Г (

d + 1
2 )

) + E {ln (−√(x − 𝜉)′Ω−1(x − 𝜉))} 
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if we use  the equation (13) then the conditional expectation of Z−1 given X is 

E(z−1|x) =
1

(1 + 𝜂′Ω−1𝜂)
(1 − √(x − 𝜉)′Ω−1(x − 𝜉)) 

where, Z−1~G(
d+1

2
,
1

2
). Taking expectation for both sides of the above equation, we have 

E(E(z−1|x)) =
1

(1 + 𝜂′Ω−1𝜂)
(1 + E [−√(x − 𝜉)′Ω−1(x − 𝜉)]) 

Therefore,  

E(z−1) =
1

(1 + 𝜂′Ω−1𝜂)
(1 + E [−√(x − 𝜉)′Ω−1(x − 𝜉)]) 

But Z−1~G(
d+1

2
,
1

2
) then 

d + 1 =
1

(1 + 𝜂′Ω−1𝜂)
(1 + E [−√(x − 𝜉)′Ω−1(x − 𝜉)]) 

Consequently,  

E [(ln(𝒫ML(x; 𝜉, Ω)))] = 𝑙𝑛(
det(Ω)−

1
2

2d(π)
1
2
(d−1)Г (

d + 1
2 )

) + (d + 1)𝜂′Ω−1𝜂 + d 

Proposition 5. Let  X0~MLd(𝜉, Ω) and X~MSLNd(𝜉, Ω, 𝜂) . Then  

H1(X; 𝜉, Ω, 𝜂) = H(X0; 𝜉, Ω) − Ĉ𝜂̃  

 

(21) 

where, 

 Ĉ𝜂̃ = 2(d + 1)𝜂′Ω−1𝜂 + √
2

𝜋
𝜂′Ω−

1
2𝜂ϒ 

 

 

(22) 

 

 Proof: from equation (8), we have 

H1(X; 𝜉, Ω, 𝜂) = −2E (ln( 𝒫ML(x; 𝜉, Ω))) − E(ln ( Φ (𝜂
′Ω̃−1(x − 𝜉))))  

Using lemma 2., we obtain  

H1(X; 𝜉, Ω, 𝜂) = −2ln(
det(Ω)−

1
2

2d√(1 + 𝜂′Ω−1𝜂)(π)
1
2
(d−1) Г (

d + 1
2 )

 ) − 2d − 2(d + 1)𝜂′Ω−1𝜂 − √
2

𝜋
𝜂′Ω−

1
2𝜂ϒ 

From Proposition 4., we have  

H1(X; 𝜉, Ω, 𝜂) = H1(X0; 𝜉, Ω) − 2(d + 1)𝜂
′Ω−1𝜂 − √

2

𝜋
𝜂′Ω−

1
2𝜂ϒ 

Lemma 3. Let X~MSLNd(𝜉, Ω, 𝜂). Then:   
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∫ (𝜓𝑑(x; 𝜉, Ω, 𝜂))
𝛕
dx

⬚

Rd

= (
𝛕−

d
1−𝛕  det(4πΩ)

1
2 Г (

d + 1
2 )√(1 + 𝜂′Ω−1𝜂)

√π
)

(1−𝛕)

 

 

 

(23) 

Proof:  from equation (8), we get 

∫ (𝜓𝑑(x; 𝜉, Ω, 𝜂))
𝛕
dx

⬚

Rd

= ∫
det(Ω)−

1
2
 𝛕

2𝛕(d−1)(π)
1
2
𝛕(d−1) (Г (

d + 1
2 ))

𝛕 exp {−𝛕√(x − 𝜉)
′Ω−1(x − 𝜉)} (Φ (𝜂′Ω̃−1(x

⬚

Rd

− 𝜉)))
𝛕

dx 

Replacing Ω−
1

2 𝜂   by 𝜂̃,   𝛕−2Ω   by Ω𝛕 and using the change of variables Y = Ω𝛕
−
1

2(X − 𝜉)  associated 

with Jacobian matrix Ω
1

2 In the above equation, we get 

∫ (𝜓𝑑(x; 𝜉, Ω, 𝜂))
𝛕
dx

⬚

Rd
  

=
𝛕−𝛕d det(Ω𝛕)

− 
1
2
𝛕+
1
2

2𝛕d(π)
1
2
𝛕(d−1)

(Г(
d+1

2
))
𝛕  ∫ exp{−√y′y + y′𝜂̃}

⬚

Rd
dy                 

where, Y~MLd(0, I𝑑 , 𝜂̃). This complete the proof.    

Corollary 1. If  X0~MLd(𝜉, Ω) and X~MSLNd(𝜉, Ω, 𝜂) ., then the Rényi entropy can be written as 

H𝛕(X; (𝜉, Ω, 𝜂) = H𝛕(X0; (𝜉, Ω, 𝜂) + Ҝ𝜂  

(24) 

Where, Ҝ𝜂 = ln(√(1 + 𝜂′Ω−1𝜂))                    

Proof : Multiplying by 
1

1−𝛕
 for equation (23), we have  

H𝛕(X; (𝜉, Ω, 𝜂) =
1

1 − 𝛕
𝑙𝑛(

𝛕−
d
1−𝛕  det(4πΩ)

1
2 Г (

d + 1
2 )√(1 + 𝜂′Ω−1𝜂)

√π
)

(1−𝛕)

 

Hence,  

H𝛕(X; (𝜉, Ω, 𝜂) = 𝑙𝑛(
𝛕−

d
1−𝛕  det(4πΩ)

1
2 Г (

d + 1
2 )

√π
)

⬚

+ 𝑙𝑛(1 + 𝜂′Ω−1𝜂) 

Proposition 4. gives us the result of this corollary. 
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4. Computational Implementation and Numerical Simulations  

All numerical computations were made with MATLAB 2020a. The integrals of skew Laplace normal 

Shannon entropy of Equation (21)were evaluated using numerical methods such as Monte Carlo and 

importance sampling methods. This section illustrates the relationship between parameters 𝛕  and η with 

entropy for d = 1, 2, 3, and 4 dimensions. Consider X~MSLNd(𝜉, Ω, 𝜂) with the following parameters: 

Case (1)  d=1, 𝜉 = 0.9,  Ω = 0.5,  𝜂 = 0.5 

Case (2)  d=2,  𝜉 = (
1
2
), Ω = (

0.7   0.1
0.1      1

) , 𝜂 = (
0.5
1
) 

Case(3)    d=3,  𝜉 = (
0
1
0
) , Ω = I3 , 𝜂 = (

0.5
1
0.4
) 

Case(4)    d=3,  𝜉 = (

0
1
0
1

) , Ω = I4, 𝜂 = (

0.5
1
0.4
0.1

) 

Case(5)    d=3,  𝜉 =

(

 
 

0
1
0
1
0)

 
 
 , Ω = I5 , 𝜂 =

(

 
 

0.5
1
0.4
0.1
1 )

 
 

 

Table 1. The values  of entropy of MSLNd(𝜉, Ω, 𝜂) are computed for 𝛕 = 2,3,4,5,10,20 and 𝛕 converges to 

infinite of one to five dimensions 

Case                   Shannon entropy H𝛕(x; 𝜉, Ω, 𝜂)                                                           

d H(x; 𝜉, Ω, 𝜂) 𝛕 = 2 𝛕 = 3 𝛕 = 4 𝛕 = 5 𝛕

= 10 

𝛕 = 20 𝛕 → ∞ 

1 1.9250 1.6182 1.4743 1.3871 1.3274 1.1809 1.0827 1.0423 

2 4.6138 4.0001 3.7124 3.5380 3.4185 3.1255 2.9291 2.8483 

3 6.7775 5.8569    5.4254 5.1638 4.9845 4.5450 4.2505 4.1293 

4 9.5977 8.3703 7.7950 7.4461 7.2072 6.6211 6.2284 5.6254 

5 12.359 10.825 10.106 9.6703 9.3716 8.6390 8.1482 7.3604 

 

 

 
Fig. 1. The horizontal line represents the values of  parameter 𝛼 and the vertical line is the Rényi entropy 

of X~MSLd(𝜉, Ω, 𝜂) with parameters in example 1. 
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5. Mixture of Multivariate Skew Laplace normal Distributions  

Let us consider the definitions of [12], [11], [13] for Mixture of Multivariate Skew Laplace normal 

distributions. The probability density function of an m-component mixture model with parameter vector set 

(𝜉, Ω, 𝜂);  𝜉 = {𝜉1, 𝜉2, … , 𝜉𝑚} a set of vectors represent location parameters, Ω = {Ω1, Ω2, … , Ωm} a set of 

covariance  matrices, the shape parameter  𝜂 = {𝜂1, 𝜂2, … , 𝜂m} is  

𝒫(x; 𝜉, Ω, 𝜂, ε) =∑εi

m

i=1

𝒫(x; 𝜉𝑖, Ω𝑖, 𝜂𝑖) 

 

 

(25) 

where,  εi ≥ 0 , ∑ εi = 1n
i=1   , f(x; 𝜉𝑖, Ω𝑖, 𝜂𝑖)  are defined as in (8)for a known (𝜉𝑖, Ω𝑖, 𝜂𝑖),  i = 1, . . . , m  and 

the notation MMSLNd(𝜉, Ω, 𝜂, ε) represents mixture of multivariate  skew Laplace distribution then for any 

j-th component density in (8)  is obtained as 

Xj|(κj = i) =
d
𝜉i + (Ω𝑖)

1

2 [
𝜂𝑖|U2𝑗|

√𝜐𝑖(𝜐𝑖+𝜂𝑖
′𝜂𝑖)

+ (𝜐𝑖𝐼𝑑 + 𝜂i𝜂i
′)
1

2U1𝑗] ,   j =

1,2, … ,m 

 

 

(26) 

whereU1𝑗~MNd(𝜉𝑗 , Ω𝑗), U2𝑗~N(0,1) and for each j = 1,2, … ,m,  𝜐𝑗 has the inverse gamma distribution 

with the probability function which defined in equation (11), Also, suppose that U1𝑗, U2𝑗 and 𝜐𝑗 are mutually 

independent.  

 

Equations ((14)-(15)) gives  

(𝟏𝟓)E(X) =∑εi

m

i=1

(𝜉𝑖 +√
2

𝜋
(Ω𝑖)

1
2𝜂𝑖ϒ𝑖 ) 

 

 

(27) 

 

Cov(X) =∑εi

n

i=1
(

 (𝑑 + 1)Ω𝑖 −
2

𝜋
(Ω𝑖)

1
2  𝜂𝑖𝜂𝑖

′(Ω𝑖)
1
2 ϒ𝑖

2

+ (𝜉𝑖 +√
2

𝜋
(Ω𝑖)

1
2𝜂𝑖ϒ𝑖)(𝜉𝑖 +√

2

𝜋
(Ω𝑖)

1
2𝜂𝑖ϒ𝑖)

′

)

 − E(X) E(X)′ 

 

 

        

(28) 
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Lemma 4.  Let X~MMSLNd(𝜉, Ω, 𝜂, ε) . Then  

Clower ≤ H1(X; 𝜉, Ω, 𝜂, ε) ≤ Cupper 
 

(29) 

where, 

Cupper =
1

2
ln(det(2πexp (1)ℳ)) 

 

(30) 

 

Clower =  ∑−2εiln (
det(Ωi)

−
1
2

2d(1 + 𝜂i
′Ωi

−1𝜂i)(π)
1
2
(d−1) Г (

d + 1
2 )

 )

m

i=1

−∑εi (2(d + 1)𝜂i
′Ωi

−1𝜂 + √
2

𝜋
𝜂i
′Ωi

−
1
2𝜂iϒ𝑖 )

m

i=1

− 2𝑑 

 

 

 

(31) 

  

 

where, 

ℳ =∑εi

n

i=1

((𝑑 + 1)Ω𝑖 −
2

𝜋
(Ω𝑖)

1
2  𝜂𝑖𝜂𝑖

′(Ω𝑖)
1
2 ϒ𝑖

2 +𝒦i𝒦i
′) 

 

 

(32) 

 

𝒦i = 𝜉𝑖 +√
2

𝜋
(Ω𝑖)

1
2𝜂𝑖ϒ𝑖 − E(X) 

 

(33) 
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Proof: using lemma 1., we have 

H1(X; 𝜉, Ω, 𝜂, ε) ≤
1

2
ln(det(2πexp (1)ℳ)) 

From equation (35)(25)the Shannon entropy is  

H1(X; 𝜉, Ω, 𝜂, ε) = −E(ln(∑εi

m

i=1

𝒫(x; 𝜉i, Ωi, 𝜂i))) 

Jensen’s inequality gives   

H1(X; 𝜉, Ω, 𝜂, ε) ≥∑εi

m

i=1

H1(X; 𝜉i, Ωi, 𝜂i) 

Lemma 5.  If  X~MMΩLNd(𝜉, Ω, 𝜂, ε), then  

H𝛕(X; 𝜉, Ω, 𝜂, ε) ≤ ℭUpper  

(34) 

 where,  

ℭUpper

=
1

1 − 𝛕
ln {exp((1 − 𝛕)H𝛕(X; 𝜉m, Ωm, 𝜂m))

+ ∑ (∑εk

i

k=1

)

𝛕
m−1

i=1

. (
exp((1 − 𝛕)H𝛕(X; 𝜉i, Ωi, 𝜂i))         

−exp((1 − 𝛕)H𝛕(X; 𝜉i+1, Ωi+1, 𝜂i+1))
)} 

 

 

 

 

(35) 

Proof: Mixture density in (25) implies that  

(𝒫(x; 𝜉, Ω, 𝜂, ε))
𝛕
= (∑εi

m

i=1

𝒫(x; 𝜉i, Ωi, 𝜂i))

𝛕

 

Applying lemma 5. In [14] when  p = 𝛕, we obtain  

(∑εi

m

i=1

𝒫(x; 𝜉i, Ωi, 𝜂i))

𝛕

 ≥  𝒫(x; 𝜉m, Ωm, 𝜂m)
𝛕 + ∑ (∑εk

i

k=1

)

𝛕
m−1

i=1

(
(𝒫(x; 𝜉i, Ωi, 𝜂i))

𝛕
       

−(𝒫(x; 𝜉i+1, Ωi+1, 𝜂i+1))
𝛕) 
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Consequently,  

∫ (𝒫(x; 𝜉, Ω, 𝜂, ε))
𝛕

⬚

Rd
dx ≥ ∫ 𝒫(x; 𝜉m, Ωm, 𝜂m)

𝛕
⬚

Rd
dx + ∑ (∑εk

i

k=1

)

𝛕

∫ [
(𝒫(x; 𝜉i, Ωi, 𝜂i))

𝛕
      

−(𝒫(x; 𝜉i+1, Ωi+1, 𝜂i+1))
𝛕]

⬚

Rd

m−1

i=1

dx 

Multiplying by  
1

1−𝛼
 for both side, we have  

H𝛕(X; 𝜉, Ω, 𝜂, ε)

≤
1

1 − 𝛕
ln {∫ 𝒫(x; 𝜉m, Ωm, 𝜂m)

𝛕
⬚

Rd
dx+∑ (∑εk

i

k=1

)

𝛕

∫ [
(𝒫(x; 𝜉i, Ωi, 𝜂i))

𝛕
       

−(𝒫(x; 𝜉i+1, Ωi+1, 𝜂i+1))
𝛕]

⬚

Rd

m−1

i=1

dx} 

Lemma 6.  Let X~MMSLNd(𝜉, Ω, 𝜂, ε). Then, for each k1, k2, … , km ∈ 𝑍+  and ∑ ki
m
i=1 = 𝛕 the following 

approximation 

1

𝛕
ln {(

𝛕!

k1!   k2!  …  km!
)∏(εi𝒫(x; 𝜉i, Ωi, 𝜂i))

ki

m

i=1

}

≅ −∑γi ln (
γi

εi𝒫(x; 𝜉i, Ωi, 𝜂i)
)

m

i=1

 

 

 

 

 

(36) 

is satisfied  as 𝛕 → ∞ ,such that   γj =
kj

𝛕
, j = 1,2, … ,m  

 

Proof:  

1

𝛕
ln {(

𝛕!

k1!   k2!  …  km!
)∏(εj𝒫(x; 𝜉j, Ωj, 𝜂j))

kj
m

j=1

}

=
1

𝛕
ln(𝛕!) −

1

𝛕
∑ln(kj!)

m

j=1

+
1

𝛕
∑kj ln (εj𝒫(x; 𝜉j, Ωj, 𝜂j))

m

j=1

 

Using the factorial approximation, we get  

1

𝛕
ln {(

𝛕!

k1!   k2!  …  km!
)∏(εi𝒫(x; 𝜉i, Ωi, 𝜂i))

ki

m

i=1

}

= ln(𝛕) − 1 +
1

2𝛕
ln(2π𝛕) −

1

𝛕
∑kI ln(ki)

m

i=1

+
1

𝛕
∑ki

m

i=1

−
1

2𝛕
∑ln(2πki)

m

i=1

+∑γi ln(εi𝒫(x; 𝜉i, Ωi, 𝜂i))

m

i=1
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But γi =
ki

𝛕
, i = 1,2, … ,m , then ∑ γi

m
i=1 = 1. Consequently,  

1

𝛕
ln {(

𝛕!

k1!   k2!  …  km!
)∏(εi𝒫(x; 𝜉i, Ωi, 𝜂i))

ki

𝑚

i=1

} =
1

2𝛕
[ln (

(2π𝛕)1−𝑛

∏ γi
𝑛
i=1

)] −∑γi ln (
γi

εi𝒫(x; 𝜉i, Ωi, 𝜂i)
)

m

i=1

 

 But lim
𝛕→∞

∑ γJ ln (
γJ

εJ𝒫(x;𝜉J,ΩJ,𝜂J)
)m

J=1 = 0  

Lemma 7.  The approximation  

H𝛕(X; 𝜉, Ω, 𝜂, ε)

≅
1

1 − 𝛕
ln(∑ (∏(γi)

−ki

m

i=1

)

⬚

ki∈B

. (∏εi
kiexp ((1

m

i=1

− 𝛕)Hki(X; 𝜉i, Ωi, 𝜂i)))) 

 

 

 

 

(37) 

is satisfied as 𝛕 → ∞. 

where,  ∑
𝛕!

∏ kJ!
m
J=1

⬚
kJ∈A

= m𝛕 , A = {kJ ∈ N, kJ > 0,∑ kJ
m
J=1 = 𝛕, J = 1, 2, … ,m} 

Proof: from  mixture model in (25), we have  

∫ (𝒫(x; 𝜉, Ω, 𝜂, ε))
𝛕
dx

⬚

Rd
= ∫ (∑εi

m

i=1

𝒫(x; 𝜉i, Ωi, 𝜂i))

𝛕
⬚

Rd
 

  Multinomial theorem gives  us 

∫ (𝒫(x; 𝜉, Ω, 𝜂, ε))
𝛕

⬚

Rd
dx

= ∫ ∑
𝛕!

∏ ki!
m
i=1

∏(εi𝒫(x; 𝜉i, Ωi, 𝜂i))
ki
dx 

m

i=1

⬚

ki∈B

⬚

Rd
 

 

 

(38) 

 

where, ∑
𝛕!

∏ ki!
m
i=1

⬚
ki∈A

= m𝛕 , A = {kJ ∈ N, kJ > 0,∑ kJ
m
J=1 = 𝛕, j = 1, 2, … ,m}  

replacing equation (38) in (36), we have 
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∫ (𝒫(x; 𝜉, Ω, 𝜂, ε))
𝛕

⬚

Rd
dx ≅ ∫ ∑ exp {−𝛕∑γi ln (

γi
εi𝒫(x; 𝜉i, Ωi, 𝜂i)

)

m

i=1

} dx

⬚

ki∈B

⬚

Rd
 

Then 

∫ (𝒫(x; 𝜉, Ω, 𝜂, ε))
𝛕

⬚

Rd
= ∑∏(γi)

−ki∫ ∏(εi𝒫(x; 𝜉i, Ωi, 𝜂i))
ki
dx

m

i=1

⬚

Rd

m

i=1

⬚

ki∈B

 

Consequently,  

∫ (𝒫(x; 𝜉, Ω, 𝜂, ε))
𝛕

⬚

Rd
= ∑ [∏(γi)

−ki

m

i=1

] [∏∫ (εi𝒫(x; 𝜉i, Ωi, 𝜂i))
ki

⬚

Rd

m

i=1

dx]

⬚

ki∈B

 

Lemma 8. Consider X~MMSLNd(𝜉, Ω, 𝜂, ε), then  

H𝛕(X; 𝜉, Ω, 𝜂, v, ε) ≥ ℭLower 
 

 

(39) 

where,  

ℭLower

=
1

1 − 𝛕
ln(∑

𝛕!

∏ ki!
m
i=1

∏(εi)
ki

m

i=1

⬚

ki∈B

. exp {
(1 − 𝛕)

𝛕
∑kiR𝛕(X; 𝜉i, Ωi, 𝜂i)

m

i=1

}) 

 

 

 

(40) 

                                                                                                 

Proof:  The Rényi entropy of X~MMSLNd(𝜉, Ω, 𝜂, ε) is 

H𝛕(X; 𝜉, Ω, 𝜂, ε) =
1

1 − 𝛕
ln(∫ (∑εi

m

i=1

𝒫(x; 𝜉i, Ωi, 𝜂i))

𝛕
⬚

Rd
dx) 

By using multinomial theorem, we obtain 

∫ (𝒫(x; 𝜉, Ω, 𝜂, ε))
𝛕

⬚

Rd
dx = ∑

𝛕!

∏ ki!
m
i=1

∏(εi)
ki∫ ∏(𝒫(x; 𝜉i, Ωi, 𝜂i))

ki
dx

m

i=1

⬚

Rd

m

i=1

⬚

ki∈B

 

Applying generalized HӦlder’s Inequality, we have 
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∫ (𝒫(x; 𝜉, Ω, 𝜂, ε))
𝛕

⬚

Rd
dx ≤ ∑

𝛕!

∏ ki!
m
i=1

∏(εi)
ki∏(∫ (𝒫(x; 𝜉i, Ωi, 𝜂i))

piki
dx

⬚

Rd
)

1
pi

m

i=1

m

i=1

⬚

ki∈B

 

where,  p1, p2, … , pm > 0 ,  ∑
1

pi

m
i=1 = 1. Hence  

∫ (𝒫(x; 𝜉, Ω, 𝜂, ε))
𝛕

⬚

Rd
dx ≤ ∑

𝛕!

∏ ki!
m
i=1

∏(εi)
kiexp {∑(

(1 − piki)

pi
Rpiki(X; 𝜉i, Ωi, 𝜂i))

m

i=1

}

m

i=1

⬚

ki∈B

 

For each , i = 1,2, … ,m, by choosing   pi =
𝛕

ki
 , where , ∑

1

pi

m
i=1 = ∑

ki

𝛕

m
i=1 = 1 and 1 ≤

𝛕

ki
≤ 𝛕, we obtain  

∫ (𝒫(x; 𝜉, Ω, 𝜂, ε))
𝛕

⬚

Rd
dx ≤ ∑

𝛕!

∏ ki!
m
i=1

∏(εi)
kiexp {

(1 − 𝛕)

𝛕
∑kiR𝛕(X; 𝜉i, Ωi, 𝜂i)

m

i=1

}

m

i=1

⬚

ki∈B

 

Theorem 1.  Let X~MMSLNd(𝜉, Ω, 𝜂, ε). Then  

Hτ(X; 𝜉, Ω, 𝜂, ε)

=  
1

 2(1 − τ)
{ln(∑

τ!

∏ ki!
m
i=1

∏(εi)
ki

m

i=1

⬚

ki∈B

. exp {
(1 − τ)

τ
∑kiHτ(X; 𝜉i, Ωi, 𝜂i)

m

i=1

})

+  (1 − τ)Hτ(X; 𝜉m, Ωm, 𝜂m)

+ ln(∑ (∑εk

i

k=1

)

τ
m−1

i=1

. (
exp((1 − τ)Hτ(X; 𝜉i, Ωi, 𝜂i))          

−exp((1 − τ)Hτ(X; 𝜉i+1, Ωi+1, 𝜂i+1))
)} 

 

 

 

 

 

 (41) 

Proof: from lemmas 11. and 14., we have the result.   

The proof is directed from lemmas 11. and 14., by taking the mean of upper and lower bounds. 

6. Conclusions and Final Remarks  

We derive upper and lower bounds on the entropy in both types (Shannon and Rényi) of a multivariate skew 

Laplace normal random variable. Then, we extended these tools to the class of finite mixture of multivariate 

skew Laplace normal densities. Considering the average of these bounds, the approximate value of entropy 

can be calculated. Both entropies converge to a finite value of a multivariate skew Laplace normal random 

variable and its mixture model for any values of α order and dimension d. Given that mixture skews Laplace 

normal entropies is localized between the upper and lower bounds, the average of these bounds can be used 

as an approximation of the mixture skew Laplace normal entropies. In addition, the mixture skews Laplace 

normal entropy bounds provide useful information about the data and could be considered as a criterion to 

choose the possible number of components in each gender-based group. 
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Finally, we encourage researchers to use the proposed approach for real-world applications and data 

analysis, such as environmental [15],  biological [4] data. 
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