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1. Introduction

The mixture models are an important statistical tool for many applications such as data mining, density estimation, pattern
recognition, medicine, satellite imaging and image processing etc. (More detail [1], [2], [3], [4]).

In 1996 Azzalini[5] proposed the skew normal distribution as an alternative to normal distribution. After a short period of time,
Genton and Loperfido (2005) [6] introduced the generalization of multivariate skew normal distribution as follows

fa: 6.9 = 20(y;¢,9).Ky—¢), yeR?
1)
Where, @(y; €,S) is a probability density function of multivariate normal distribution and 0 < K(y) < 1 such that K(—y) =

1—K(y), forany y € RY. Clearly, if we take K(y) = % Then Y has a normal distribution in the multivariate case. Where, if K

is a distribution function such as K(y) = G(n'y) Then this gives the generalized skew normal distribution. The structure of this
paper was designed according to the following fundamental aims:

1) We determine and investigate the exact expression for Shannon and Rényi entropies of the skew Laplace normal distributions
in multivariate analysis.

2) We drive and identify the best approximate expression for Shannon entropy of mixture model of distributions.


http://creativecommons.org/licenses/by/4.0/

Uday Jabbar Quaez, MJpPAs, Vol. 2, No. 3, 2024

3) An asymptotic expression for Rényi entropy is given by the approximation and by using some inequalities and properties of
Lp-spaces

4) We find the bounds of entropy for mixture model of distributions by using generalized HOlder’s inequality and some
properties of multinomial theorem.

5) We give and discuss examples with real data to illustrate the behavior of entropy of the mixture models.

2. Preliminary Material

Let y be a continuous random vector that takes values of RY and 2 (y; £)be the density function of y. A
continuous Rényi entropy of y is defined as

H.(y; &) = 1_-[1n(E(:P(y; ) ,t#1,0<T
—E (ln(:P(Y} E))) , =1

()
When t = 1, we have the Shannon entropy
Hy(y:8) = —E (In(P(; ©))
3)
The relationship between the entropies in equations (1) and (2) is given by H;(y;%) = ‘1[1_12 H.(y; ).
Translation does not change of the entropy H.(y + k; §) = H.(y; §) + k where, k is constant.
Proposition 1. Suppose that 0 < t; < T, < o, then Hy, (y; &) = He, (y; §). If y has uniformly distribution

then He, (y; §) = Hy, (y; ©).

Proof: firstly, suppose that T # 1, then
0 ot E((P(y; )" 'In(P(y; E))) In(E(P(y;)" )
—H.(y; = — + 2
R T 1-7

The second part in right side of the above equation is

In (E(?(y; E))“l) E ((?(y; 5)" ' In (E(P(y; E))T_l»

(1—-1)? B (1—- ‘t)ZE(P(y; E))T_l
Therefore,
. 1 [E((Pxo)  mEe:e)T) .\ E ((?(y; 9)" In(E(PW; E))H))
- Ay, = -1 -1
ot (1-v? E(P(y; %) E(P(y;®)
( -1 )
w1, [ (P(y;®) )
E| (P(yv;®)) 1 (—H
I R ey
= 3 — >
1-9? E(P(y;D)"
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PR A5 anew probability function, then
E(P(y:9)

3 o -1 gy; ®)
o= (o(223)

8(y;%) : ; g8(y;%) o .
But Eg <1n (P—(y;a)> not negative value therefor, either E, (ln (—? (y:E))> > 0, then H,(y; &) is decreasing

Now, to define g(y; §) =

with respect to T or E, (ln (i%%)) = 0 this implies that f = g almost everywhere, but T # 1 then P only
has uniform distribution. Conversely, assume that y has uniform distribution then, P(y; &) =

1

—— , XEA

{Vol(A) X , for some measurable set A < R". consequently, H(y;%) = ﬁln(Vol(A)“l) =
0 X EA B

In(Vol(A)) Does not depend on .

Proposition 2. Renyi entropy does not depend on the location parameter for location scale model does not
depend on location parameter.

Proof: The location scale model P (y; ¢) Can be written as
1 1
P, :6,0) = (det@) 2 B, (07267~ ),0,1)

1
Where, y, = Q 2(y — &). The Rényi entropy is

76,0 = (G @) + 1 . -in(E (2,000, 1))>H

1
= ln(det(ﬂ))2 + H,(y; 0,1)
Proposition 3. [7] Let y,~MN4(¢, Q). Then, the Rényi entropy of y, is given as

%ln(det(Zn exp(1) Q)) , =1
Ht(y; Eﬁ 'Q) = d
Eln(det(ZnQ)) — mln(‘[) O<t<oot#1

(4)
Lemma 1. [8] Let y be a continuous random vector that takes values of R and 2 (y; 0, M) be the density
function of y. Then, the following inequality is accomplished
1
H,(y;0,M) < Eln(det(Znexp (HM))
()
3. Entropy of proposed Distributions

This section includes the complete derivation of simple expressions for entropy of multivariate skew
Laplace normal distribution. Some properties of transformations and integrations are used. Also, we give
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an illustrative example explains the relationship between the parameter tth order of entropy and skewness
parameter n with the values of Reényi entropy.

Azzalini and Capitaino [9] introduced multivariate skew Laplace distribution(y~MSL4(&,Q,1)) as
follows

) iPd(y; S;; Q, 77)
_ det(Q) 2 exp {—J(l +7' Q) (y — ' (y — f)}
ZdB(T[)%(d_l)F (d '; 1) +y—8'a™'y (6)

Where, & € R4, O € R¥*4 and skewness vector n € RY.
The generalized skew Laplace distribution (y~SGL(&,Q,n4,75)) is

ny

k(y; €, Q,n1,m2) = 28(y; €, Q).G T
(1+n;,y%)2 (7)

where, g is univariate Laplace distribution, G is cumulative distribution function of univariate standard
normal andn; € R, n, = 0. A random vector y € RY has multivariate skew Laplace normal distribution
(y~MSLN4 (&, Q,n)) if it has probability density function as follows

Ya; &, 90,m) = 2Py £, D@ (A (y - )

(8)

~ 1
where, &, € RY, Q € R™4 (positive definite), Q = diag(si1, S22, -, Saa)? » & =(s) , i ,j =1,2,....d
and Py (v; €, Q) is a multivariate Laplace distribution.

det(Q)_%
i expi—/(y—8'Q1(y—¢)
20024 (S57) | | ©)

PuL(y; €, Q) =

The stochastic representation ofy~MSLN4 (&, , 1) can be introduced as mixture of multivariate normal
distribution U; ~MN4 (¢, Q) and univariate standard normal distribution U,~N(0,1)

1 nlU,| It
y =&+ Q2 |—==+ la +1m")2U,
Vo +n'n)
(10)
Where, v has the inverse gamma distribution with the probability density function
1 _(d+1 1
gW) =5 T ( 2 +1)e
27T (%)
(11)
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and suppose that U, U, and v are mutually independent. For the details about this see [10].
The joint density function and conditional distribution are given as follows ([11])

Px ) = Jet@” zexp((x-§)' 071 (x-)} -
TR -Dr(A2)
exp {5 (= /07 = O + (L + 0 )
12)
P(alx)
Gryaty (/A rame 2 G-aiG-9 (13
VIm | i 0 - D2+ (4

Clearly, when n = 0 then the multivariate skew Laplace distribution can be reduced to the symmetric
multivariate Laplace distribution. The mean vector and covariance matrix of yare derived by [10] in the
following forms:

2 1
E(y) =€+ﬁ(ﬂ)2nY
s
(14)
2 1 1
Var(y) = (d + DQ — = (Q)Z nn'(Q)Z 67

T (15)

where, Y = E(\/(v)_) , , Which can be computed by using numerical methods such as importance

sampling methods.
The characteristic function of y~MSLN4 (&, Q,n) is given by

. =1
Yy (r) = exp <¥> E, (exp <UTFQF> 1+ iTK’(Ur))

~ 1
7, = wlwand w = diag(siy,S22, -, Sdaa)? » & =(syj) , i, ]
(1+v=29'0n )2
the function 1 () is defined as follows

(16)

3
v 207

where, x = 1,2,...,d and
Yy (2 u?

T(y) = f — exp <—> du , y>0,1(-y)=-1(y)
0 AT 2

We note that the expectation given in the equation (16) can be calculated by numerical methods.
Proposition 4. Let X,~ML4 (&, Q). Then
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1
det(Q) 2

Toy d+ny |2
241 + QM2 1 (S5=) (17)

H;(x0; ¢, Q) = =2In (

T % det(4nQ)%F (d+—1)

2 ,0<tT<ootT#1

Vm (18)

H.(%0;&,Q) = In

Proof: By taking the natural logarithm and expectation for both sides of equation (9), we get on equation
(17). Also, from equation (9), we get

fR:(?ML(Yi ¢, Q))de =

e
det(ﬂ) 2 exp {—T\/ (X — f)'ﬂ_l(X _ f)} dx

J
27(d-1) ()@= <F (M)) R

2

Taking natural logarithm and multiplying by 1 — t for both sides of above equation, we have the result
in equation (18)

Lemma 2. Let X~MSLNy(&,Q,n) distributed in the equation (8). Then

i. E [ln (d? (n’ﬁ_l(x — E)))] = \/%n’ﬂ_énY
(19)

ii. E [(ln(?ML(X; ¢, Q)))] —
1
det(Q)Z ]
! 1 +d+Dn'Qn+d 20
' (zdmmaw—n r(%) > ( n n (20)

Proof: Directly,
B[ (@ (r8710c- ©))] = Bl - ')
—E (Tr(n'Q—l(x -9))

= Tr(n'Q7'E(x — §))

2 1
=T —n'Q 2nY
r n’? n
2 1
= [—n'Q 2nY
n77 n

Now, to prove part ii.,

[ (In(Pan s £, 0))] = zn< o 2 1)) +Efin (—/Gm G- D))
2

1
24(my2r (

6
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if we use the equation (13) then the conditional expectation of Z~1 given X is

E(z7'x) = 1- G- 0Tx-9)

(1+7n'Q7'n) (

where, Z‘1~G(%, %). Taking expectation for both sides of the above equation, we have

E(E(Z_1|X)) = m (1 +E [_\/(X &) (x— f)])

Therefore,
_ 1 ——
Ez™) =m(1+E[—\/(X—f) Q 1(X—f)])
Butz! G(E 1) then
1
d+1 :m(l'{'E[—\/(X—f)’Q_l(X—f)])

Consequently,
det(Q)_%
24(my2@-vr (441
Proposition 5. Let X,~ML4(¢, Q) and X~MSLN4(¢,€Q,1) . Then
H,(X; €,9Q,m) = HX; €, Q) — C5

+ @+ Dn'Q'n+d

E|(In(Puus & 0))| =1

(21)
where,

N 2 1
Ci=2(d+Dn'Q'n+ \/;n’ﬂ ZnY
(22)

Proof: from equation (8), we have

Hy (€, Q,m) = —2E (In( Py (€, 0)) ) — B <ln ( @ (/G (x - f))))
Using lemma 2., we obtain

1
det(Q)) 2

1
20 /@ + (2 r (L)

From Proposition 4., we have

2 1
H(X;¢,Q,1) = —2In —2d—-2(d+Dn'Q n - \/;n’ﬂ_frﬂ

2 1
Hi(X & Q,n) = Hi(Xp; €,Q) —2(d + 1)71’9_17] - \/;U’Q_EUY

Lemma 3. Let X~MSLNy(&,Q,n). Then:
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Lﬁ¢Amaﬂmnhx

(1-9 23

‘[_% det(4nﬂ)% r (dzi) 1+n'Q 1) @)
B v
Proof: from equation (8), we get
(alxi & 2.m) dx
Rd
o 11
_ J‘ det(Q) 2 _exp {—T\/(X — 0 (x— 5)} (CD (nrﬁ—l(x

R e(d-1) () 7¥(-D) <r (%))
- 5)))T dx

1 _1
Replacing Q"zn by 7, ©=2Q by Q. and using the change of variables Y = Q_2(X — &) associated
1
with Jacobian matrix Qz In the above equation, we get

Jea(Wa(x€,Q,m) dx
__tv det(0) "%
2“1(11)%‘(‘1‘1)(F(%))T

where, Y~ML4 (0,14, 7). This complete the proof.
Corollary 1. If X,~ML4(¢,Q) and X~MSLN4(¢,Q,n) ., then the Rényi entropy can be written as
HT(X; (f' Q, TI) = HT(XO; (f' Q, 77) + Kn
(24)

Where, K, = In(y/(1+7'Q"1n))

Proof : Multiplying by li_t for equation (23), we have

d 1 (1-1)
T 1-t det(4nQ)2 T (%) 1+n'Q 1)

Vr

1
HT(X; &9, TI) = 1= ‘[ln

Hence,

T_% det(4nﬂ)% r (ﬁ)

. — 2
HT(X' (f; ‘Q' 77) - ln \/E

+ (1 +n'Q 1y

Proposition 4. gives us the result of this corollary.
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4. Computational Implementation and Numerical Simulations

All numerical computations were made with MATLAB 2020a. The integrals of skew Laplace normal
Shannon entropy of Equation (21)were evaluated using numerical methods such as Monte Carlo and
importance sampling methods. This section illustrates the relationship between parameters T and n with
entropy for d =1, 2, 3, and 4 dimensions. Consider X~MSLNg4 (¢, Q, ) with the following parameters:

Case (1) d=1,¢ =09, Q=05 n=0.5

Case @) 62, £ = (). 0= (g7 *1) = ()

0
Case(3) d=3, &= <1> , Q
0

Il
w
=
Il
o o
S ¢ ¢
~ T
\_/

0 5
_ 1 1
Case(4) d=3, ¢ = 0 QA=1,,n= 0.4
1 0.1
0 5
1 1
4

0

Case(®) d=3,¢é=|01|,Q=I3,n=]0.
1 0.1

0 1

Table 1. The values of entropy of MSLN4 (¢, Q,n) are computed for T = 2,3,4,5,10,20 and T converges to
infinite of one to five dimensions
Case Shannon entropy H.(x; &, Q,1)
d Hx; é,rt=2 t=3 1t=4 1=5 1 T=20 T>
=10

1.9250 1.6182 1.4743 1.3871 1.3274 1.1809 1.0827 1.0423
4.6138 4.0001 3.7124 3.5380 3.4185 3.1255 2.9291 2.8483
6.7775 5.8569 5.4254 51638 4.9845 4.5450 4.2505 4.1293
9.5977 8.3703 7.7950 7.4461 7.2072 6.6211 6.2284 5.6254
12.359 10.825 10.106 9.6703 9.3716 8.6390 8.1482 7.3604

g B~ W DN -

caza,
TS5
GASLT

Rexyi Entrop
i
|
/ ‘
|

|

Fig. 1. The horizontal line represents the values of parameter a and the vertical line is the Rényi entropy
of X~MSLq4 (¢, Q,n) with parameters in example 1.

9
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5. Mixture of Multivariate Skew Laplace normal Distributions

Let us consider the definitions of [12], [11], [13] for Mixture of Multivariate Skew Laplace normal
distributions. The probability density function of an m-component mixture model with parameter vector set
(& Q,n); & =1{&,&,, ..., &, ) a set of vectors represent location parameters, Q = {Q4,Q,, ..., Q. } a set of
covariance matrices, the shape parameter n = {14,713, ..., Mm} IS

m

:P(X; E' 'Q' n, E) = & P(X; Ei' 'Qir 771)
; (25)

where, & > 0,XL, & =1 ,f(x; &, Q;,n;) are defined as in (8)for a known (&;,Q;,n;), i=1,...,m and
the notation MMSLN (€, Q, 1, €) represents mixture of multivariate skew Laplace distribution then for any
j-th component density in (8) is obtained as

A d 1T niluy L _
Xil(Ki =1) = &+ (Q)2 [\/T%‘F (ilg + mini )20y y 1=
1,2,..,m

(26)

whereU; ;~MN4(§;,9;), U,;~N(0,1) and for eachj = 1,2, ...,m, v; has the inverse gamma distribution
with the probability function which defined in equation (11), Also, suppose that U, ;, U,; and v; are mutually
independent.

Equations ((14)-(15)) gives

m ) 1
(15)EX) = Z & & +\/;(-Qi)2rliyi

= 27)
Cov(X) = Zn: g| (d+1)Q; — E(Q-)% : -’(Q-)%Y-z
- L 1 l T l r’lnl l l
2 1 2 1 ,
+{ &+ \/;(Qi)zniYi $i + \/;(-Qi)zrliyi — EX) EX)’ (28)

10
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Lemma4. Let X~MMSLN4(¢,Q,n,¢€) . Then

Clower = Hl(X; S;' Q, n, 5) = Cupper (29)
where,
1
Cupper = Eln(det(Znexp (1)]\/[))
(30)
1
) i - det(Q,) 2
lower = —<«§&jln 1
i=1 29(1 + Tlilﬂi_lﬁi)(ﬁ)f(d_l) r (—d ; 1)
m
_1 2 _1
—Z gl 2(d+ Dn'Q " n+ \/;771'91 2nY; | —2d
i=1 (31)
where,
n
2 1 ! 1 2 1
M = Z & ((d +1DQ; — - Q)2 nn' (QD2Y;" + 7@%)
i=1 (32)
XK 2 Q 2 Y
1 €l+ n( l) T’l l ( ) (33)

11
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Proof: using lemma 1., we have
1
H{(X;&,Q,1n,¢) < —ln(det(Znexp (1)]\/[))
From equation (35)(25)the Shannon entropy is

m

Hi(6E0n,8) = —B| In| > & P06 8 970

i=1

Jensen’s inequality gives
m
Hi(X;€,Q,1n,8) = Z & Hy (X; §3, Q4,m1)
i=1
Lemmab. If X~MMQLNy(§,Q,7,¢€), then

Hi(X; &, Q,7m,8) < (gUpper

(34)
where,
CCUpper
= 1— ‘[ln exp((l - T)HT(X; Emr Q) nm))
m-—1 i T
+ z . < exp((l — DH(X; &, Q;, 771)) >}
k .
—= \= —exp((1 = OH (X &iv1, Qis1,Mi41)) (35)
Proof: Mixture density in (25) implies that
m T
(P(x; €91, 5))t = Z & P(x; &, Qi mi)
i=1
Applying lemma 5. In [14] when p = T, we obtain
m N m-—1 i * (.‘P( f Q ))‘t
X; iy 44, 77
Z g§P& Q) | = P ém Omy )™ + Z € ( e r)
i=1 im1 \ k=1 _(?(X} S(i+1'Qi+1;771+1))

12
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Consequently,

. T
i\ e

" m-1 /1 -\
(POs£,0m,0) dx 2 [ PO G O ax+ Y (Y e ] |
R i=1 R

d d
R k=1

(P(x; ¢, Qirni))t

< dx
_(?(Xi $ir1 Qis1) 771+1))

Multiplying by ﬁ for both side, we have

H.(X; ¢, Q,m,€)

. T
i\ e

: m-—1
1 30— —— Y s ]
< In {f :P(X; Em; Qm, nm)T dx + z 2 €k f
1 — T Rd = Rd

k=1

(P(x; &, Tli))T ]d
| dx
_(SD(XJ $iv1s Qi+1;77i+1))

Lemma 6. Let X~MMSLNy(¢,Q,n,€). Then, for each kq,k,, ..., ky, € Z* and Y12, k; = T the following
approximation

m
1 T! kj
;ln{(kl! Kyl km!)l—l[(si?(x; 5o 1)) }
i=

m
== ()
B i g P (x5 65, Q) (36)

is satisfied as t — oo ,suchthat y; = %] =12,..,m

Proof:

1l < T! )
T ! k! k!

]

m m
1 1 1
= ;ln(‘t!) - ;Z ln(k]-!) + ;z kj In (Ej?(X; &, -ernj))
j=1 j=1

m .
(Ej?(X; 51'91'771)) ]
=1

Using the factorial approximation, we get

%m{(kl! k;!!... km!) E[(Eizp G "zi’Qi’”i))ki}

m m m
1 1 1 1
= In(¥) 1+ 5= In(2m0) ;Z k; In(k) + ;Z k; — Z_‘Z In(2mk;)
1= 1= 1=

m
+ Z vi In(&;P(x; &, Qi)
im1

13
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Buty; = % i=1,2,..,m,then ), y; = 1. Consequently,

%ln{(kl' ka! .. )1_[(8? 8o ) } (Qni:lvin)l_;“ i (eiys(x;g,ni,mQ

. m — )=
But T11_)rr010 Z]=1 Y) In (s]yn(x;fl.ﬂml)>

Lemma 7. The approximation

H‘[(X; E’ Q,n, 8)
1 m m
= hen( 3 ([oos) ([T
kiEB i=1 i=1
— DHy, (X; fb%ﬂi)))
(37)
is satisfied as T — oo.
where, Zii:I:EAl'[mt!k] =m", A={k eNKk>0Y k=1]=12,..,m}

Proof: from mixture model in (25), we have

.... (?(x & Q,n, s)) dx = f Zsi?(x; &, Qi,m1)
Rd

i=1

Multinomial theorem gives us

- Ldémntl'k ln(g P(x; &, Q) “dx (38)

where, ZkeAﬁ =m*,A={k €NJK>0TR k=1j=12..,m}

replacing equation (38) in (36), we have

14
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Then

Consequently,

(P(xfﬂn,e)) —kEB[ﬂm ”1_[ f (P(56,2,m))" ax

1=

Lemma 8. Consider X~MMSLN4 (&, Q, 1, €), then
H‘[(X; E' 'Q' nv, S) = (SLower
(39)

where,

G;Lower

In Zmlk,ﬂ@l)kl exp{( - )ZkR % & l,m)})

(40)

Proof: The Rényi entropy of X~MMSLN4(¢,Q,n,€) is

T

In f Z g§P(x &, Qmy) | dx
- T Rd

i=1

HT(X; f; Q, n, S) = 1

By using multinomial theorem, we obtain

] (PG E0,m,0) dx—zn kﬂ(sl)k ] ---- ﬂ(?(x R

Applying generalized HOlder’s Inequality, we have

15
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..... 1

f (?(X &0, 8)) dx < Z Hnllk |1_[(51)k (j;:(?(x; - ni))pikidx>pi

where, p1,p2 -, Pm >0, 2{21% = 1. Hence

. ! m = /(1 — k;
f (P(x¢Qme) dx < z ﬁl—[(si)kiexp {Z ((p—p) Rp.k, (X; &5, Qi Tli))}
R4 ke =171 i !

Foreach,i=1,2,...,m, by choosing p; = kl , Where , Z{‘;li = Zi“;l% =land 1< kl < T, we obtain

v Z KiR(X; &, Q, 771)}
i=1

(1
(?(x £0,1,8) dx < Z T ,H(sl)k’eXp{
=1

Theorem 1. Let X~MMSLN4(¢,Q,n,¢€). Then

H (X; €, Q,1n,¢€)

+ (1 - T)H‘E(X' Em' m’ nm)

T

) m

—T

Z le‘E(X) fi; Q
i=1

m-—1 i

exp((1 — DHL(X; &, 4, m1)) >}
+in Z Z el <—exp((1 - DH.(X; Szi+1»ﬂi+1;77i+1))

i=1 \k=1

(41)

Proof: from lemmas 11. and 14., we have the result.
The proof is directed from lemmas 11. and 14., by taking the mean of upper and lower bounds.
6. Conclusions and Final Remarks

We derive upper and lower bounds on the entropy in both types (Shannon and Reényi) of a multivariate skew
Laplace normal random variable. Then, we extended these tools to the class of finite mixture of multivariate
skew Laplace normal densities. Considering the average of these bounds, the approximate value of entropy
can be calculated. Both entropies converge to a finite value of a multivariate skew Laplace normal random
variable and its mixture model for any values of « order and dimension d. Given that mixture skews Laplace
normal entropies is localized between the upper and lower bounds, the average of these bounds can be used
as an approximation of the mixture skew Laplace normal entropies. In addition, the mixture skews Laplace
normal entropy bounds provide useful information about the data and could be considered as a criterion to
choose the possible number of components in each gender-based group.
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Finally, we encourage researchers to use the proposed approach for real-world applications and data
analysis, such as environmental [15], biological [4] data.
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