
Mustansiriyah Journal of Pure and Applied Sciences, Print ISSN: 2957-9910. Online ISSN: 2957-9929, Vol. 3, No. 2, 2025, Pages 153-168

DOI: 10.47831/mjpas.v3i2.325

153

RESEARCH ARTICLE – COMPUTER SCIENCE

Leveraging hybrid database models for enhanced gene-disease association analysis

Sama Salam Samaan
1*

, Saja Dheyaa Khudhur
 2
, Omar Nowfal Mohammed Taher

 3

1,2,3
Computer Engineering Department, University of Technology - Iraq

*
 Corresponding author E-mail: sama.s.samaan@uotechnology.edu.iq

Article Info. Abstract

Article history:

Received

17 September 2024

Accepted

10 October 2024

Publishing

30 March 2025

Many diseases are driven by genetic variations. The Gene-Disease Association (GDA) dataset,

structured as a network, evaluates the relationships between genes and diseases. Typically, the

GDA dataset consists of semi-structured data, which does not conform to a tabular format. In

this work, we propose a hybrid approach for processing, storing, and analyzing TBGA, a GDA

dataset comprising over 200,000 JSON instances and 100,000 gene-disease pairs. We introduce

two procedures to import the TBGA dataset into both a relational model and a graph model.

SQL Server is employed for the relational model to support analytical and reporting tasks,

while Neo4j is used for the graph model to enable visualization and the application of graph

algorithms tailored for GDA analysis. Experimental results demonstrate the effectiveness of

each model, with SQL Server excelling in analytical tasks and Neo4j in visualization and graph

analysis..

This is an open-access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/)

The official journal published by the College of Education at Mustansiriyah University

Keywords: GDA, graph database, semi-structured data, TBGA.

1. Introduction

Genetic diseases occur when a mutation affects genes or when there is a wrong amount of genetic

material. Studying genetic variation is essential in understanding and identifying the genetic factors

involved in diseases. Although significant advancement has been achieved over the past two decades,

deciphering the genetic foundations of rare diseases is still a challenging task, characterized by its

intricacy. Genetic instability is the main cause of genetic heterogeneity. Many diseases are caused by

gene abnormalities. Cancer, for example, shows highly heterogeneous genotypes, leading to difficulty

identifying the biological markers [1]. Another example is Autism Spectrum Disorder (ASD) which

involves more than 800 genes and numerous genetic syndromes [2] [3]. COVID-19 depicts a notable

variability in clinical symptoms, ranging from asymptomatic disease to deadly pneumonia . Part of this

heterogeneity can be explained by differences in the host genetic profile. These differences are

determined by both common and irregular genetic variants in the host genome [4].

Gene-disease associations (GDA) quantify the relation between a pair of genes and disease. They are

usually created as a network where we can probe the gene-disease mechanisms by considering

multiple genes and disease factors. This task is to predict the association of any gene and disease from

both a biochemical modeling and network edge classification perspective. Network-based

computational methods are used for GDA prediction based on the assumption that the genes driving

the same diseases are located close to each other in a molecular network [5].

GDA is usually considered semi-structured data, data that is not purely structured but also not

completely unstructured [6]. It contains some level of organization but fits outside a rigid schema or

data model and may include elements that are not easily categorized or classified. It is typically

characterized by metadata or tags providing supplementary information about the data elements.

MJPAS

MUSTANSIRIYAH JOURNAL OF PURE AND APPLIED SCIENCES

Journal homepage:

https://mjpas.uomustansiriyah.edu.iq/index.php/mjpas

https://doi.org/10.47831/mjpas.v3i1.75
mailto:sama.s.samaan@uotechnology.edu.iq
http://creativecommons.org/licenses/by/4.0/

Samaan. et. al, MJPAS, Vol. 3, No. 2, 2025

154

Examples of semi-structured data are CSV, XML, and JSON [7]. Semi-structured data is becoming

increasingly common as organizations collect and process more data from various sources, including

social media, IoT devices, and other unstructured sources. While semi-structured data can be more

challenging to work with than strictly structured data, it offers greater flexibility and adaptability,

making it a valuable tool for data analysis and management. NoSQL databases are considered a

popular candidate for handling semi-structured data [8].

A graph database is a NoSQL database that stores data as a network graph [9]. It is different from the

other NoSQL options in that it documents and prioritizes the relationships between data. Graph

databases comprise nodes and edges, where nodes represent specific entities, while edges represent the

connection between two nodes [10]. They are designed to be scalable and offer flexibility that's hard to

find in other databases. While in a relational database, data is stored in tables, with each table defined

by its columns and rows [11].

The main contribution of this work is to utilize both relational and graph databases in a hybrid

approach to store and analyze GDA data. We exploit the strengths of both models to handle and

process TBGA, a GDA extraction dataset generated from more than 700,000 publications that consist

of over 200,000 instances and 100,000 gene-disease pairs [12]. We employ an SQL server for the

relational model and Neo4j as a graph database model. The rest of this paper is organized as follows.

Section 2 reviews the state-of-the-art in the use of relational and graph databases, particularly in the

biomedical sector. Section 3 introduces two methodologies for processing, storing, and analyzing the

TBGA dataset within relational and graph models, respectively. Section 4 details the experiments

conducted using SQL Server and Neo4j databases. Section 5 discusses the results obtained from

applying the two models. Finally, Section 6 concludes the paper.

2. Related work

Until now, relational databases have remained essential and dominant in various applications such as

data mining, business intelligence, and data analysis. It has been the predominant data model for

storing and accessing data since the 1970s [13]. A relational database is preferred among developers

for its simplicity and flexibility, primarily due to its data abstraction feature, which shields users from

the complexity of its internal data storage mechanisms. However, simplicity is now the mainstream in

today's data-intensive world. H. R. Vyawahare et al. [14] recognize the limitations of traditional

relational databases, especially in the context of Web 3.0 and big data, where the need to manage

relationship-rich data is dominant. They highlight that graph databases, such as Neo4j, which support

the property graph model, offer a flexible and efficient data handling structure. However, the paper

needs to include a practical case study to demonstrate the real-world application and effectiveness of

the proposed hybrid database model. In addition, the paper mentions the advantages of NoSQL

databases in terms of scalability but needs to provide a detailed evaluation of the hybrid model's

scalability.

Recently, graphs have gained significance in big data applications like social network analysis,

spatiotemporal analysis, navigation, and consumer analytics. They excel in capturing intricate

relationships and data dependencies. For instance, in social networks, vertices represent users, pictures,

and events, while edges depict relationships between them. Y. Cheng et al. [15] provide a detailed

comparison between Relational Database Management Systems (RDBMSs) and Graph Database

Management Systems (GDBMSs). They develop a unified benchmark to evaluate both systems using

the same datasets and metrics, addressing differences in data models and query languages. The study

reveals that RDBMSs outperform GDBMSs in workloads involving group-by, sort, and aggregation

operations, while GDBMSs excel in multi-table joins, pattern matching, and path identification. The

paper highlights the lack of a unified graph model and query language in GDBMSs as a significant

limitation, alongside the considerable programming and maintenance overhead required for their use.

Samaan. et. al, MJPAS, Vol. 3, No. 2, 2025

155

Although the study is comprehensive, it does not include a real-world case study, which could have

provided additional insights into the practical applications of both systems.

SQL databases have traditionally managed and queried data across various domains, including

biomedical fields [16]. However, the rise of NoSQL databases presents an alternative solution to

handle big data challenges posed by large volume, velocity, variety, and veracity of data. Among

these, the Neo4j graph database is increasingly adopted for its efficiency, flexibility, and scalability in

querying and integrating data based on a graph data model, particularly suited for relationship-oriented

or knowledge-based applications. I. K. Subagja et al. [16] explore using Neo4j to integrate various

immunological datasets. The authors developed a system that supports complex query capabilities

using the Cypher query language and provides a user-friendly web-based interface for researchers.

This interface allows users to easily navigate and visualize the integrated data without learning

Cypher. The primary advantage highlighted is the efficiency and flexibility of graph databases in

managing highly relational biological data compared to traditional SQL databases. However, the paper

needs extensive case studies demonstrating real-world applications, limiting the empirical validation of

the system's effectiveness. The paper needs to include detailed performance benchmarks comparing

LinkedImm with traditional relational or other graph databases, and it addresses the scalability of

handling large datasets. Additionally, it must profoundly explore data consistency and integration

challenges or include user feedback and usability studies to assess the web-based interface's practical

usability.

Rapid advancements in experimental and analytical techniques provide diverse information about

biological components. Although individual details are essential, the fundamental aim of biology is to

understand the complex interactions among heterogeneous data contributing to cellular functions.

Identifying these intricate relationships is challenging due to their complexity. S. A. C. Bukhari et al.

[17] clarified the feasibility of using graph databases for representing and storing complex biological

data and relationships. They collected diverse biological data, such as gene-disease associations,

protein-protein interaction, etc., and compared the performance of MySQL and Neo4j as a relational

database and graph database, respectively. Neo4j outperformed MySQL in all perspectives,

particularly query response time and search speed.

J. Schäfer et al. [18] developed a web application that utilizes Neo4j as a graph database, which was

gained by transforming an SQL database. The developed application provided analysis and

visualization of patients. In addition, they used NeoDash, a tool for creating a dashboard in Neo4j, to

visualize and query a specific patient or group of patients, display information such as gender

distribution, and find particular patterns shared among patients. Some limitations are observed, such as

directly exporting report charts and tables from the dashboard. In addition, the paper didn't exploit

graph algorithms to observe patterns, such as patients with identical or comparable medical histories.

These observations are instrumental in pinpointing a medical treatment roadmap for each patient.

Although previous works provide valuable insights into the use of relational and NoSQL databases,

they do not address the analysis and knowledge extraction from large GDA datasets like the TBGA.

Furthermore, they lack real-world case studies that demonstrate practical applications of both models.

Additionally, previous studies have not employed graph algorithms to discover patterns such as gene

or disease similarity, which is crucial for suggesting personalized treatment roadmaps for patients

Table 1 shows a related work summary showcasing the employed database, the key findings, and the

work limitations.

Table 1. Related Work Summary.

Samaan. et. al, MJPAS, Vol. 3, No. 2, 2025

156

Ref Authors
Publication

Year

Database

Type
Key Findings Limitation

[14]

H. R. Vyawahare,

P. P. Karde, V. M.

Thakare

2019
Hybrid

Database

Highlights the

advantages of

graph databases

like Neo4j over

traditional

relational

databases in the

context of Web

3.0 and big data.

 a practical case study to

demonstrate the real-world

application and effectiveness of

the proposed hybrid database

model.

of the hybrid model's scalability.

[15]

Y. Cheng, P. Ding,

T. Wang, W. Lu,

X. Du

2019

Relational

and Graph

Database

Reveals that

RDBMSs

outperform

GDBMSs in

group-by, sort,

and aggregation

operations, while

GDBMSs excel

in multi-table

joins, pattern

matching, and

path

identification.

and query language in GDBMSs,

presenting a significant limitation.

programming and maintenance

overhead for GDBMSs.

-world

case study, which could have

provided additional insights into

the practical applications of both

systems.

[16] I. K. Subagja et al. 2019
NoSQL

Database

Explores the use

of Neo4j for

integrating

immunological

datasets,

highlighting

efficiency and

flexibility in

managing highly

relational

biological data.

to demonstrate real-world

applications, limiting the

empirical validation of the

system's effectiveness.

benchmarks comparing

LinkedImm with traditional

relational or other graph

databases.

data consistency and integration

challenges.

feedback and usability studies to

assess the web-based interface's

practical usability.

[17]

S. A. C. Bukhari,

S. Pawar, J.

Mandell, S. H.

Kleinstein, K.-H.

Cheung

2021
Graph

Database

Demonstrates the

feasibility of

using graph

databases for

representing and

storing complex

biological data,

with Neo4j

outperforming

MySQL in query

response time

and search speed.

 detailed performance

benchmarks comparing the

system with traditional relational

or other graph databases.

consistency and integration

challenges.

usability studies to assess the

web-based interface's practical

usability.

[18]

J. Schäfer, M.

Tang, D. Luu, A.

K. Bergmann, L.

Wiese

2022
Graph

Database

Developed a web

application using

Neo4j for

analysis and

visualization of

patients, utilizing

NeoDash for

dashboard

creation.

export report charts and tables

from the dashboard.

algorithms to observe patterns

such as patients with identical or

comparable medical histories,

which are instrumental in

pinpointing a medical treatment

Samaan. et. al, MJPAS, Vol. 3, No. 2, 2025

157

Highlights

limitations in

report export and

lack of graph

algorithms for

pattern

observation.

roadmap for each patient.

3. Materials and Methodology

This section demonstrates the TBGA dataset employed in this work, detailing its construction, format,

and size. Additionally, we propose two procedures for importing TBGA, the first procedure imports it

into a relational model using SQL Server and the second procedure imports it into a graph model using

the Neo4j database.

3.1. Dataset Description

The TBGA dataset is designed for Biomedical Relation Extraction (BioRE) [19], focusing on GDA.

DisGeNET database is exploited to build the TBGA dataset, which is a GDA dataset created in a semi-

automagical manner [20]. The DisGeNET is one of the largest collections of human genes and diseases

[21]. The TBGA is extracted from more than 700,000 publications. It comprises 218,973 instances and

more than 100,000 gene-disease pair [12]. Each instance consists of three parts, the sentence from

which the GDA is extracted, the corresponding GDA, and the information about the gene-disease pair.

Fig. 1 shows a sample record from the TBGA dataset showing the sentence from which the GDA was

extracted, the relationship name associated with the given GDA, and the JSON objects representing the

gene and disease within the record.

Fig. 1. A sample record from the TBGA dataset.

3.2. Importing TBGA into a Relational Model

To effectively import the TBGA dataset into a relational model, we develop a Python application to

import the data from the TBGA JSON file into the SQL Server database. The procedure consists of the

following steps:

1. Database Connection: A connection to the SQL Server using Windows Authentication is

established.

2. Tables Creation: Three tables are created: Genes, Diseases, and Associations. The Genes and

Diseases tables store unique identifiers and names, while the Associations table captures the

relationships between genes and diseases, including relevant metadata.

3. Loading TBGA Dataset: The JSON data is loaded line by line from the specified file.

4. Parsing JSON Record: The JSON file is read line by line to handle multiple JSON objects. Each

JSON record in the TBGA dataset consists of four parts: text, relation, h, and t. The id and

name of the gene are extracted from the h part, and the id and name of the disease are extracted

from the t part.

Samaan. et. al, MJPAS, Vol. 3, No. 2, 2025

158

5. Data Ingestion: The extracted data is inserted into their respective tables, Genes, and Diseases,

ensuring no duplicates. The association data is inserted into the Associations table, linking genes

and diseases through foreign keys.

Following the steps above, three tables named Genes, Diseases, and Associations are created.

The Genes table has 11,784 rows, the Diseases table has 9,199 rows, and the Associations table

has 218,973 rows. Fig. 2 shows the relational schema of the TBGA database.

Fig. 2. The relational schema of the TBGA database.

3.3. Importing the TBGA dataset into a Graph Model

This section outlines the step-by-step procedure for constructing the property graph and importing the

TBGA dataset into the Neo4j graph database.

1. Nodes Creation: A schema for two types of nodes, Genes and Diseases, is defined.

2. Loading TBGA Dataset: The TBGA dataset file, containing data in JSON format, is loaded.

3. Parsing JSON Record: The necessary information is extracted for each record in the dataset. The

gene ID and Gene name are extracted from the h part for the Gene node, and the disease ID and

Disease Name are extracted from the t part for the Disease node.

4. Graph Population: The extracted information is inserted into their respective nodes, Genes and

Diseases.

5. Relationships Creation: For each record, a Cause relationship is created from the Genes node to the

Diseases node based on the extracted information. This involves matching the

two nodes and creating a relationship between them.

Following the steps above, a graph of 20,983 nodes (11,784 Gene nodes and 9,199 Disease nodes) and

106,032 relationships is constructed. This graph represents the complex interplay between genes and

diseases, providing a robust foundation for further analysis and exploration in biomedical research.

Fig. 3 shows the graph schema of the TBGA database.

Fig. 3. The graph schema of the TBGA database.

Associations *
id

relation

gene_id

disease_id

Diseases *
id

name

Genes *
id

name

Samaan. et. al, MJPAS, Vol. 3, No. 2, 2025

159

The difference in the number of rows imported into the Associations table (218,973 rows) and the

number of relationships created in the graph database (106,032 relationships) can be attributed to

several factors:

 Duplicate Relationships: The same gene-disease association might be listed multiple times with

different metadata in the relational database. However, these would be represented in the graph

database as a single relationship between two nodes.

 Data Normalization: The relational model might store more detailed records that result in multiple

rows, while the graph model could condense these into fewer relationships.

The block diagram presented in Fig. 4 effectively illustrates importing the TBGA dataset data into

relational and graph databases utilizing SQL Server and Neo4j, respectively. This hybrid approach

highlights the strengths of both relational and graph databases in managing and analyzing complex

GDA data.

Fig. 4. A block diagram illustrating the steps of importing the TBGA dataset into SQL Server and Neo4j databases.

4. Experiments

To demonstrate the effectiveness of the proposed hybrid approach, we conducted a series of

experiments employing SQL server and Neo4j, which represent relational and graph databases,

respectively.

4.1. Experiment Setup

This work uses Neo4j version 4.4.35 as a graph database due to its scalability, high performance, and

native graph storage and processing capabilities [22]. Cypher is used to implement the importing

procedure since it is the most widely adopted query language for property graph databases, such as

Neo4j. SQL Server Management Studio (SSMS) 20.2 is used for relational database model. All

experiments were executed on a laptop with an Intel Core i7 CPU, four cores, and 16 GB of RAM.

4.2. Experimenting with SQL Server

The first part of the experimentation entails executing a series of SQL queries on the imported TBGA

dataset to demonstrate relational databases' superiority in data analysis and reporting. The experiments

exhibit how efficiently SQL Server can handle complex queries, perform aggregations, and generate

insightful reports from the created database.

Samaan. et. al, MJPAS, Vol. 3, No. 2, 2025

160

a. Listing all genes causing a specific disease

The query clarified below is used to retrieve the genes associated with a specific disease. It includes

three joins, an aggregate function (COUNT), and a GROUP BY clause. The query displays the count

of distinct genes and a comma-separated list of these gene names.

SQL Query 1 Retrieve the genes associated with a specific disease.

SELECT

 d.name AS disease_name,

 COUNT(DISTINCT g.id) AS gene_count,

 STUFF((

 SELECT DISTINCT ', ' + g2.name

 FROM associations a2

 INNER JOIN genes g2 ON a2.gene_id = g2.id

 WHERE a2.disease_id = d.id

 FOR XML PATH(''), TYPE).value('.', 'NVARCHAR(MAX)'), 1, 2, '') AS

gene_names

FROM diseases d

INNER JOIN associations a ON d.id = a.disease_id

INNER JOIN genes g ON a.gene_id = g.id

WHERE d.name = Disease Name

GROUP BY d.name, d.id;

b. Counting the Number of Diseases Associated with a specific Gene

To investigate the number of diseases associated with a specific gene, we executed the SQL query

clarified as follows.

SQL Query 2 Retrieve the number of diseases associated with a specific gene.

SELECT g.name AS gene_name, COUNT(a.disease_id) AS disease_count

FROM associations a

INNER JOIN genes g ON a.gene_id = g.id

Where g.name= Gene Name

Group by g.name

c. Identifying the Genes Most Frequently Linked with Diseases

This query is used to identify each gene and the number of diseases associated with it, ordered in

descending order.

SQL Query 3 Retrieve each gene and the count of diseases associated with that gene.

SELECT Genes.name AS gene_name, COUNT(DISTINCT Associations.disease_id) AS

disease_count

FROM associations

INNER JOIN Genes ON Associations.gene_id = Genes.id

GROUP BY Genes.name

ORDER BY disease_count DESC

Samaan. et. al, MJPAS, Vol. 3, No. 2, 2025

161

d. Identifying the Diseases Most Frequently Linked with Genes

The SQL query shown below is used to identify each disease and the number of genes associated with

it, ordered in descending order.

SQL Query 4 Retrieve each disease and the count of genes associated with that disease.

SELECT Diseases.name AS disease_name, COUNT(distinct Associations.gene_id) AS

gene_count

FROM Associations

INNER JOIN Genes ON Associations.gene_id = Genes.id

INNER JOIN diseases ON Associations.disease_id = Diseases.id

GROUP BY Diseases.name

ORDER BY gene_count DESC

4.3. Experimenting with Neo4j

The second part of the experiment involves implementing a series of Cypher queries on the imported

TBGA dataset. It aims to reveal graph databases' superiority in data visualization and handling

complex relationships between genes and diseases to uncover meaningful patterns and insights. The

experiments illustrate executing multiple graph algorithms tailored for GDA.

a. Visualization

One key benefit of using a graph database is the ability to visualize complex relationships. In this part

of the experimentation, we focus on visualizing the genes associated with a specific disease. A cypher

query is executed to find and visualize all the genes that cause a specific disease, as shown in the

Neo4j Query 1 listed below.

Neo4j Query 1 Finding and visualizing all the genes causing a specific disease.

MATCH (d:Disease {name: Disease Name})<-[:Cause]-(g:Gene)

RETURN d, g

b. Similarity Analysis

Beyond visualization, we also explore the similarity between a pair of diseases based on the genes that

cause each of them. Using the Node Similarity algorithm, we can measure the similarity between

diseases to identify potential common treatments and to understand the shared underlying mechanisms

of both diseases, since diseases with similar genetic profiles may respond similarly to certain

treatments [23].

c. Gene Ranking

The PageRank algorithm measures the most influential genes within the network. Initially developed

for ranking web pages, the PageRank algorithm is used here to determine the importance of genes

based on their connections within a network of GDA. It assigns a score to each gene based on its

connections. This approach helps identify which genes play pivotal roles within the database,

prioritizing research and understanding the network's dynamics.

Samaan. et. al, MJPAS, Vol. 3, No. 2, 2025

162

5. Results

5.1. SQL Server Experiment Results

a. Listing all genes causing the “Brain Tumor” disease

For “Brain Tumor, Primary”, executing the SQL Query 1 identifies 18 genes associated with this

disease as shown in

Fig. 5. The query ensures no duplicate genes are counted or listed, offering an accurate and

comprehensive output. The query's performance can vary based on the database size and indexing.

Fig. 5. List of genes associated with the Brain Tumor disease.

b. Counting the Number of Diseases Associated with a specific Gene

In this example, executing the SQL Query 2 results in retrieving the count of diseases linked to the

“PMS2” gene, revealing that it is associated with 106 diseases, highlighting the significant role of the

“PMS2” gene in various diseases.

Fig. 6. The “PMS2” gene and the count of diseases associated with it.

c. Identifying the Genes Most Frequently Linked with Diseases

Executing the SQL Query 3 results in identifying each gene and the count of diseases associated with

it, ordered in descending order, as shown in Fig. 7.

Fig. 7. Part of a table showing the top ten genes and the count of diseases associated with them.

d. Identifying the Diseases Most Frequently Linked with Genes

Executing the SQL Query 4 results in identifying each disease and the count of genes associated with

it, ordered in descending order, as shown in

Samaan. et. al, MJPAS, Vol. 3, No. 2, 2025

163

Fig. 8. Part of a table showing the top ten diseases and the count of genes associated with them.

5.2. Experimenting with Neo4j

a. Visualization

An example of executing the Neo4j cypher query 1 is to retrieve all the genes associated with the

“Brain Tumor” disease through the “Cause” relationship. As seen in Fig. 9, the central node represents

the “Brain Tumor” disease, and the surrounding nodes represent the genes associated with it. The

arrows denote the “Cause” relationship, indicating that each gene has been linked to the disease.

Another example is shown in Fig. 10, which shows the genes associated with the “Tumor Vasculature”

disease. By visualizing the data in this manner, researchers can quickly identify critical genes involved

in a specific disease, facilitating further analysis and potentially leading to discoveries in disease

mechanisms and therapeutic targets.

Fig. 9. Genes causing the “Brain Tumor, Primary” disease.

Samaan. et. al, MJPAS, Vol. 3, No. 2, 2025

164

Fig. 10. Genes causing the “Tumor Vasculature” disease.

b. Similarity Analysis

For instance, the following visualizations show a couple of diseases, “Acrania” and

“Diastematomyelia”, each caused by three common genes, CSF2, PRSS8, and IFNG. As illustrated in

Fig. 11, both diseases share these three genes, indicating a potential similarity. The similarity score of

both diseases is illustrated in

, which shows that the similarity score between “Acrania” and “Diastematomyelia” equals 1. In

addition, “Acrania” is similar to three other diseases as listed in the same table. This similarity

suggests that these diseases benefit from similar therapeutic approaches or share common biological

pathways.

Fig. 11. Genes causing the “Diastematomyelia” and “Acrania” diseases

Table 2. Sample of similarity scores between a couple of diseases.

Disease name Disease name Similarity score

Acrania Diastematomyelia 1

Acrania Iniencephaly 1

Acrania Neurenteric Cyst 1

Acrania Spinal Cord Myelodysplasia 1

Mesothelioma, Cystic Redness of eye 0.5

Additionally, Fig. 12 illustrates another example with a similarity score of 0.5. Here, “Mesothelioma,

Cystic” is caused by the genes “CDKN2A” and “EXOSC1”, while “Redness of the Eye” is caused by

the “CDKN2A” gene only. The shared gene, “CDKN2A”, indicates a partial similarity, i.e., a

Samaan. et. al, MJPAS, Vol. 3, No. 2, 2025

165

similarity score equals 0.5, as illustrated in Table 2. These results demonstrate how genetic overlaps

can be identified and analyzed efficiently using a graph database.

Fig. 12. A visualization showing the genes causing the “Mesothelioma, Cystic” disease (left), and the “Redness of

eye” disease (right).

d. Gene Ranking

The chart in Fig. 13 presents the results of executing the PageRank algorithm on the TBGA database,

highlighting the top ten genes with the highest PageRank scores.

Fig. 13. The top ten genes with the highest PageRank scores.

As shown in Fig. 13, the top two genes, MTSS1 (Score: 11.289) and CYREN (Score: 11.252) have the

highest PageRank scores, suggesting they have significant influence and connections within the TBGA

network. Their high scores indicate strong relationships with other essential genes and potentially

crucial roles in multiple disease pathways. TP53 (Score: 8.415), TNF (Score: 6.808), and CD4 (Score:

6.381) genes also rank highly, reflecting their critical roles in gene-disease associations. TP53 is well-

known for its involvement in cancer [24], while TNF and CD4 are pivotal in immune response

regulation [25] [26]. Although IFNA1 (Score: 6.038), SH3PXD2A (Score: 5.560), POMC (Score:

5.543), CDKN2A (Score: 4.876), and IL6 (Score: 4.734) genes have lower scores compared to the top

three, they still hold significant positions in the network. IL6, for instance, is a crucial mediator in

inflammatory responses [27].

6. Conclusions

11.289 11.252

8.415

6.808 6.381 6.038 5.560 5.543
4.876 4.734

0.000

2.000

4.000

6.000

8.000

10.000

12.000

Gene Score

Samaan. et. al, MJPAS, Vol. 3, No. 2, 2025

166

RDBMSs have been the standard for data management for decades, but the increasing complexity of

modern applications highlights their limitations in handling intricate relationships. GDBMSs, with

their graph structures, offer powerful tools for managing relational and graph data, blurring the lines

between the two. The proposed hybrid approach leverages the strengths of both models, SQL Server's

robust querying capabilities and Neo4j's advanced graph analytics. This hybrid approach, in which

each model excels in specific areas, enhances the accuracy and scalability of automated GDA

extraction and moves forward in biomedical research. This paper analyzed TBGA, a semi-structured

GDA dataset, where each record is in JSON format. We proposed two importing procedures: the first

involves importing the TBGA dataset into a relational model using SQL Server, and the second

imports the same dataset into a graph model using Neo4j. A number of SQL queries is employed to

demonstrate the strengths of the relational model, such as the use of aggregate functions and the

GROUP BY clause, which are efficient in GDA analysis and reporting. Moreover, we utilized Neo4j

to visualize all genes that cause a particular disease. In addition, multiple graph algorithms are

implemented that are tailored for GDA analysis. For example, we employ the Node Similarity

algorithm, which compares a set of nodes based on the nodes they are connected to. Two nodes are

deemed to be similar if they share many of the same neighbours. In the GDA context, the Node

Similarity algorithm is used to find the similarity score between two specific diseases based on the

genes associated with them. In addition, we employed the PageRank algorithm to identify the most

influential genes within the network. These analyses can highlight valuable connections and aid in

developing more effective treatment protocols. By applying advanced graph techniques, we can gain

deeper insights into the relationships between genes and diseases, ultimately contributing to improved

biomedical research and healthcare outcomes.

References

[1] T. J. Ballinger, M. E. Sanders, and V. G. Abramson, “Current HER2 testing recommendations

and clinical relevance as a predictor of response to targeted therapy,” Clin. Breast Cancer, vol.

15, no. 3, pp. 171–180, Jun. 2015.

[2] A. Genovese and M. G. Butler, “The autism spectrum: Behavioral, psychiatric and genetic

associations,” Genes (Basel), vol. 14, no. 3, Mar. 2023, doi: 10.3390/genes14030677. Available:

http://dx.doi.org/10.3390/genes14030677

[3] D. D. Khudhur and S. D. Khudhur, “The classification of autism spectrum disorder by machine

learning methods on multiple datasets for four age groups,” Measur. Sens., vol. 27, no. 100774, p.

100774, Jun. 2023.

[4] C. I. van der Made, M. G. Netea, F. L. van der Veerdonk, and A. Hoischen, “Clinical implications

of host genetic variation and susceptibility to severe or critical COVID-19,” Genome Med., vol.

14, no. 1, p. 96, Aug. 2022.

[5] A.-L. Barabási, N. Gulbahce, and J. Loscalzo, “Network medicine: a network-based approach to

human disease,” Nat. Rev. Genet., vol. 12, no. 1, pp. 56–68, Jan. 2011.

[6] Z. J. M. Ameen and S. S. Samaan, “A WEB BASED APPLICATION FOR CLINICAL

LABORATORY INFORMATION MANAGEMENT SYSTEM,” J. eng. sustain. dev., vol. 24,

no. 6, pp. 127–136, Nov. 2020.

[7] J. Yan, Y. Meng, L. Lu, and L. Li, “Industrial big data in an industry 4.0 environment:

Challenges, schemes, and applications for predictive maintenance,” IEEE Access, vol. 5, pp.

23484–23491, 2017.

[8] S. Ramzan, I. S. Bajwa, R. Kazmi, and Amna, “Challenges in NoSQL-based distributed data

storage: A Systematic Literature Review,” Electronics (Basel), vol. 8, no. 5, p. 488, Apr. 2019.

Samaan. et. al, MJPAS, Vol. 3, No. 2, 2025

167

[9] G. Gricourt, T. Duigou, S. Dérozier, and J.-L. Faulon, “neo4jsbml: import systems biology

markup language data into the graph database Neo4j,” PeerJ, vol. 12, p. e16726, Jan. 2024.

[10] “A survey of graph techniques applied in Software Defined Networking,” Iraqi Journal of

Computer, Communication, Control and System Engineering, pp. 115–124, Sep. 2023.

[11] P. Kotiranta, M. Junkkari, and J. Nummenmaa, “Performance of graph and relational databases in

complex queries,” Appl. Sci. (Basel), vol. 12, no. 13, p. 6490, Jun. 2022.

[12] S. Marchesin and G. Silvello, “TBGA: a large-scale Gene-Disease Association dataset for

Biomedical Relation Extraction,” BMC Bioinformatics, vol. 23, no. 1, p. 111, Mar. 2022.

[13] J. F. Naughton, “DBMS: Lessons from the first 50 years, speculations for the next 50,” in 2010

IEEE 26th International Conference on Data Engineering (ICDE 2010), IEEE, 2010. doi:

10.1109/icde.2010.5447648. Available: http://dx.doi.org/10.1109/icde.2010.5447648

[14] H. R. Vyawahare, P. P. Karde, and V. M. Thakare, “Hybrid database model for efficient

performance,” Procedia Comput. Sci., vol. 152, pp. 172–178, 2019.

[15] Y. Cheng, P. Ding, T. Wang, W. Lu, and X. Du, “Which category is better: Benchmarking

relational and graph database management systems,” Data Sci. Eng., vol. 4, no. 4, pp. 309–322,

Dec. 2019.

[16] I. K. Subagja et al., “Evaluation of big data analytics in medical science,” Int. J. Eng. Adv.

Technol., vol. 8, no. 6s3, pp. 717–720, Nov. 2019.

[17] S. A. C. Bukhari, S. Pawar, J. Mandell, S. H. Kleinstein, and K.-H. Cheung, “LinkedImm: a

linked data graph database for integrating immunological data,” BMC Bioinformatics, vol. 22, no.

Suppl 9, p. 105, Aug. 2021.

[18] J. Schäfer, M. Tang, D. Luu, A. K. Bergmann, and L. Wiese, “Graph4Med: a web application and

a graph database for visualizing and analyzing medical databases,” BMC Bioinformatics, vol. 23,

no. 1, p. 537, Dec. 2022.

[19] P.-T. Lai, C.-H. Wei, L. Luo, Q. Chen, and Z. Lu, “BioREx: Improving biomedical relation

extraction by leveraging heterogeneous datasets,” J. Biomed. Inform., vol. 146, no. 104487, p.

104487, Oct. 2023.

[20] Shao et al., “LNPL-MIL: Learning from Noisy Pseudo Labels for Promoting Multiple Instance

Learning in Whole Slide Image,” in 2023 IEEE/CVF International Conference on Computer

Vision (ICCV), Oct. 2023, pp. 21438–21438.

[21] J. Piñero et al., “DisGeNET: a comprehensive platform integrating information on human

disease-associated genes and variants,” Nucleic Acids Res., vol. 45, no. D1, pp. D833–D839, Jan.

2017.

[22] J. Chen, Q. Song, C. Zhao, and Z. Li, “Graph database and relational database performance

comparison on a transportation network,” in Communications in Computer and Information

Science, in Communications in computer and information science. Singapore: Springer

Singapore, 2020, pp. 407–418.

[23] P. Csermely, T. Korcsmáros, H. J. M. Kiss, G. London, and R. Nussinov, “Structure and

dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review,”

Pharmacol. Ther., vol. 138, no. 3, pp. 333–408, Jun. 2013.

[24] J. Hu et al., “Targeting mutant p53 for cancer therapy: direct and indirect strategies,” J. Hematol.

Oncol., vol. 14, no. 1, p. 157, Sep. 2021.

[25] S. L. Montgomery and W. J. Bowers, “Tumor necrosis factor-alpha and the roles it plays in

homeostatic and degenerative processes within the central nervous system,” J. Neuroimmune

Pharmacol., vol. 7, no. 1, pp. 42–59, Mar. 2012.

Samaan. et. al, MJPAS, Vol. 3, No. 2, 2025

168

[26] S. Yang, J. Wang, D. D. Brand, and S. G. Zheng, “Role of TNF–TNF receptor 2 signal in

regulatory T cells and its therapeutic implications,” Front. Immunol., vol. 9, Apr. 2018, doi:

10.3389/fimmu.2018.00784. Available: http://dx.doi.org/10.3389/fimmu.2018.00784

[27] A. Shahini and A. Shahini, “Role of interleukin-6-mediated inflammation in the pathogenesis of

inflammatory bowel disease: focus on the available therapeutic approaches and gut microbiome,”

J. Cell Commun. Signal., vol. 17, no. 1, pp. 55–74, Mar. 2023.

